

VLBI Celestial Reference Frames and Assessment with Gaia

David Mayer¹ and <u>Johannes Böhm²</u>

¹BEV – Federal Office of Metrology and Surveying, Austria ²TU Wien, Austria

Montreal, 22. Juni 2018

bev.gv.at

Outline

- History of Astrometry
- Vienna solution
- Various modifications
- Gaia-CRF2
- Vector spherical harmonics
- Transformation parameter

History of Astrometry

History of Astrometry

VLBI vs Gaia

Gaia Collaboration, Prusti, T., et al. (2016)

bev.gv.at

Federal Office of Metrology and Surveying

Motivation

- Several goals were set for the ICRF3:
- Finished by 2018
- **Competitive accuracy to Gaia**; Find and correct systematic effects
- Precision spread more evenly among sources; Dedicated observing programs with the VLBA
- Improved spatial coverage; Dedicated observing programs in the Southern Hemisphere
- Included high frequency catalogs
- Increased number of sources for frame ties to Gaia; Include in IVS program

Estimation of a VLBI reference frame

Vienna solution – Single session parameterization

- ICRF3 solution data set used. Data from 1979 March 2018, 6199 sessions in total
- Troposphere estimation
 - ZWD as PWLO every 30 min with relative constraints
 - A priori DAO gradients
 - Gradients estimated as PWLO every 6h with relative and absolute constraints
- Clock estimation
 - One rate and one quadratic term
 - PWLO every 60 min with relative constraints

Vienna solution – Global solution parameterization

- Estimated parameters
 - Positions and velocities of 96 stations (21 are in datum)
 - Positions of 4482 sources (295 are in datum)
- Reduced parameters
 - 68 stations
 - 39 sources

Vienna solution – Source distribution

Most of the sources in the ICRF3 are VCS sources observed by the VLBA.

The VLBA can only observe to about -40° declination \rightarrow hole in the far south

Gaia DR2 – The celestial reference frame (Gaia-CRF2)

The Gaia-CRF2 contains 550 000 sources.

2800 have an ICRF3 counterpart.

It is aligned to the ICRF3 prototype catalog.

Modeling and analysis choices –Galactic Aberration (GA)

Apparent motions caused by galactic aberration.

5.8 μ as/yr with the center of the Galaxy at 17h45min40sec in RA and $-29^{\circ}00'28''$ in DEC.

Modeling and analysis choices – Troposphere

- Gradients
 - A priori models; DAO or GRAD model
 - Absolute and relative constraints
 - Sampling interval
- ZWD estimation; Sampling interval and relative constraints
 - A priori ray-traced delays; Derived from 1° ECMWF data with 6h resolution (program RADIATE)
- Elevation dependent weighting

Modeling and analysis choices – Others

- Clock estimation; Sampling interval and relative constraints
- NNR constraints; Strength of constraint, sources used for the NNR
- Axis offset (AO); Estimating AO, using AO altitude correction
- Phase calibration at Hobart12
- Estimating special handling sources
- Estimating station seasonal harmonics
- Inflation of formal error

Vector Spherical Harmonics (VSH)

State of the art tool to compare astrometric catalogs. Large scale rotations and deformations are reflected by degree 1.

Rotation:

$$\Delta \mu_{\alpha} \cos \delta = r_1 \cos \alpha \sin \delta + r_2 \sin \alpha \sin \delta - r_3 \cos \delta$$
$$\Delta \mu_{\delta} = -r_1 \sin \alpha + r_2 \cos \alpha$$

Glide:

$$\Delta \mu_{\alpha} \cos \delta = -d_1 \sin \alpha + d_2 \cos \alpha$$
$$\Delta \mu_{\delta} = -d_1 \cos \alpha \sin \delta - d_2 \sin \alpha \sin \delta + d_3 \cos \delta$$

+ degree 2

Vector Spherical Harmonics (VSH) – Outlier

We found that the **standard** outlier detection suggested by Mignard (2016) **does not work well** for the data set at hand.

- Systematic differences are on the level of the formal uncertainties
- Significant deviation from Rayleigh distribution

We calculated VSH 2800 times each time excluding one of the sources. The scatter

can be used to detect outliers. $_{40}$ ge_{1}^{2} ge_{1}^{2} ge

Transformation parameters – w.r.t. Gaia-CRF2

Vie18

- + Ray-traced delays
 + no abs. const. on grad.
 + galactic aberration
- + error inflation

Deformations of degree 1 can be explained by modeling and analysis choices. However, a significant $a_{2,0}^e$ parameter persists no matter the modeling choices.

Transformation parameters – Mignard outlier test

Vie18

- + Ray-traced delays+ no abs. const. on grad.+ galactic aberration
- + error inflation

Result very dependent on the outlier estimation technique.

Transformation parameters – Validation with ICRF3

Vie18

+galactic aberration

+ special handling est.

+ ICRF3 defining

+ ICRF3 a priori

+ error inflation

Good agreement with ICRF3.

bev.gv.at

Summary and Conclusion

- Various ICRF3 solutions were compared with the Gaia-CRF2 catalog
- The comparison is done with VSH of degree 2
- Vienna ICRF3 shows a good agreement with the Gaia-CRF2
- Systematic deformations of order 1 can be explained by modeling choices when estimating the VLBI solution
- However, the $a_{2,0}^e$ parameter of order 2 can not be explained
- The Vienna ICRF3 shows a large variability in the D₃ parameter, which is directly connected to the source declination. This reflects the unevenly distributed VLBI station network

Why do we need the ICRF?

- Astrophysics and astrometry; studies about Active Galactic Nuclei etc.
- Astronomy; sources used for phase referencing
- Geodesy; accurate determination of EOP
- Spacecraft tracking; determine position of spacecraft w.r.t. stable background

bev.gv.at

Federal Office of Metrology and Surveying

Thanks for your attention

David Mayer BEV <u>david.mayer@bev.gv.at</u>