

Introduction Simulation study Results UEN Results PM Results NUT Summary & Conclusions The importance of accurate a priori information for VLBI Intensive sessions

L. Kern¹, M. Schartner², J. Böhm¹, S. Böhm¹, A. Nothnagel¹, B. Soja²

[1]Department of Geodesy and Geoinformation, TU Wien, Wiedner Hauptstrasse 8, 1040, Vienna, AT [2]Institute of Geodesy and Photogrammetry, ETH Zürich, Robert-Gnehm-Weg 15, 8093, Zurich, CH

Overview

Introduction Simulation study Results UEN Results PM Results NUT Summary &

1. Introduction

- 2. Simulation study
- 3. Impact of erroneous station coordinates
- 4. Impact of erroneous polar motion
- 5. Impact of erroneous nutation components
- 6. Summary & Conclusions

Very Long Baseline Interferometry (VLBI)

Introduction

Simulation study Results UEN Results PM Results NUT

Summary & Conclusions simultaneous measurement of radio signals emitted by extragalactical radio sources (quasars) by at least two VLBI stations

$$\tau = -\frac{\mathbf{b} \cdot \mathbf{s_0}}{c} = t_2 - t_1$$

- determination of:
 - station and source coordinates,
 - EOP (polar motion, nutation offsets, UT1-UTC)
 - atmospheric parameters, ...

(1)

[Schuh and Böhm, 2013]

Intensive sessions

Introduction

- Simulation study Results UEN Results PM Results NUT
- Summary & Conclusions

- single baseline sessions
- one hour duration
- dedicated to derive UT1-UTC (mean formal uncertainty: 5-20 $\mu s)$
- restricted number of observations
- restricted number of estimates (ZWD, clock, UT1-UTC)
- remaining parameters are fixed to their a priori value (EOP, station/ source coordinates, tropospheric gradients, ...)

$\rightarrow \sigma_{a priori}$ impacts $\sigma_{UT1-UTC}$

Experiment setup [Schartner et al., 2021]

- 323 artificial VGOS stations placed on regular 10° x 10° global grid
- reference stations at $\delta lon = 0 \rightarrow \approx$ 3000 baselines
- scheduled (VieSched++) and simulated (VieVS)
 - monthly schedules per baseline
 - reduced source list with equally distributed sources
 - focus corner scheduling algorithm*

*[Nothnagel and Campbell, 1991; Uunila et al., 2012; Gipson and Baver, 2015; Schartner et al., 2021]

Simulation

study

Introduction

Simulation study

Results UEN

Results PM

Results NU

Summary & Conclusions

Erroneous a priori information

- introducing realistic errors (in separate evaluations):
 - up, east, north ightarrow 5 mm
 - x_p , y_p + dX, dY o 162 µas
- simulation results of evaluations are compared to unaltered results
 → monthly △UT1 values
- investigate mean and standard deviation of $\Delta UT1$

Introduction

Simulation study

Results UEN

Results PN

Results NU

Summary & Conclusions

Erroneous a priori information

- introducing realistic errors (in separate evaluations):
 - up, east, north ightarrow 5 mm
 - $x_{
 m
 ho}$, $y_{
 m
 ho}$ + dX, dY ightarrow 162 μ as
- simulation results of evaluations are compared to unaltered results
 → monthly △UT1 values
- investigate mean and standard deviation of $\Delta UT1$

Introductior

Simulation study

Results UEN

Results PN

Results NU

Summary & Conclusions

Erroneous a priori information

- introducing realistic errors (in separate evaluations):
 - up, east, north ightarrow 5 mm
 - $x_{
 m
 ho}$, $y_{
 m
 ho}$ + dX, dY ightarrow 162 μ as
- simulation results of evaluations are compared to unaltered results \rightarrow monthly $\Delta UT1$ values
- investigate mean and standard deviation of $\Delta UT1$

 \rightarrow high $\overline{\Delta UT1}$... high sensitivity/ low resistance against a priori error \rightarrow high $\sigma_{\Delta UT1}$... high variability of $\overline{\Delta}$ throughout the year

Impact of erroneous station coordinates

a) error in up-direction

- $\overline{\Delta}$ > 5 µs (8%) and $\overline{\Delta}$ > 20 µs (3%)
- low resistance: baselines with midpoint close to equatorial plane/ baselines parallel to Earth rotation vector

TU

WIEN

Results UEN

Impact of erroneous station coordinates

Introduction Simulation study Results UEN Results PM Results NUT Summary & Conclusions

b+c) error in east- and north-direction

- $-~\overline{\Delta}>$ 5 μs (84/ 63%) and $\overline{\Delta}>$ 20 μs (22/ 16%)
- low resistance: baselines with midpoint close to equatorial plane, short baselines (, N-S baselines)
- high resistance: E-W baselines to mid-latitudes of same hemisphere

Intermezzo: Impact of source selection and scheduling optimization on $\Delta UT1$

[Kern et al., 2022b - to be published]

- impact source selection variability between monthly estimates
- impact scheduling optimization variations within one month

Impact of erroneous polar motion

 $\begin{array}{c} \mathbf{d} & \mathbf{d} \\ \mathbf{$

- d+e) error in x_{p} and y_{p} -direction
 - $\,\overline{\Delta}$ > 5 µs (50-70%) and $\overline{\Delta}$ > 20 µs (12-25%)
 - low resistance: baselines with midpoint close to equatorial plane/ equatorial baselines, N-S baselines
 - high resistance: E-W baselines to mid-latitudes of same hemisphere

10/13

WIEN

Results PM

Impact of erroneous nutation components

- high resistance: E-W baselines to mid-latitudes of same hemispheres pre-

Summary & Conclusions

Introduction Simulation study Results UEN Results PM

Summary & Conclusions

- global simulation study on the impact of a priori errors on the determination of UT1 with VLBI Intensives
- almost 3000 baselines and 240 000 simulations

high sensitivity/ low resistance against investigated a priori errors

baselines with a midpoint close to equatorial plane

low sensitivity/ high resistance against investigated a priori errors

long E-W baselines between a reference station and a station at mid-latitudes of same hemisphere

• impact of a priori errors are not negligible!

References

Summary &

Gipson J, Baver K (2015) Minimization of the UT1 Formal Error Through a Minimization Algorithm. In: Proceedings of the 22nd European VLBI Group for Geodesy and Astrometry Working Meeting

Kern L, Schartner M, Böhm J, Böhm S, Nothnagel A, Soja B (2022a) On the importance of accurate pole and station coordinates for VLBI Intensive baselines. Journal of Geodesy [under review]

Kern L, Schartner M, Böhm J, Böhm S, Nothnagel A, Soja B (2022b) Impact of the source selection and scheduling optimization on the estimation of UT1-UTC in VLBI Intensive sessions. In: International VLBI Service for Geodesy and Astrometry 2022 General Meeting Proceedings [to be published]

Nothnagel A, Campbell J (1991) Polar Motion Observed by Daily VLBI Measurements; Proceedings of the AGU Chapman Conference on Geodetic VLBI: Monitoring Global Change; NOAA Technical Report NOS 137 NGS 49, S. 345 - 354, Washington D.C.

Schartner M, Kern L, Nothnagel A, Böhm J, Soja B (2021) Optimal VLBI baseline geometry for UT1-UTC Intensive observations. Journal of Geodesy 95(75)

Schuh H, Böhm J (2013) Very Long Baseline Interferometry for Geodesy and Astrometry. In G. Xu, editor, Sciences of Geodesy - II, pages 339–376. Springer-Verlag Berlin Heidelberg

Uunila M, Nothnagel A, Leek J (2012) Influence of Source Constellations on UT1 Derived from IVS INT1 Sessions. In: Behrend D, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2012 General Meeting Proceedings, pp 395-399