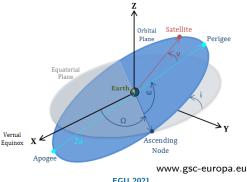


Visibility study of Galileo satellites from a VLBI network

Wolf H.¹, Böhm J.¹, Schartner M.², Hugentobler U.³

¹TU Wien, Department of Geodesy and Geoinformation ²ETH Zürich, Department of Civil, Environmental and Geomatic Engineering ³TU München, Institute for Astronomical and Physical Geodesy

Satellite observations with VLBI


- observations to quasars are integral part of VLBI
- VLBI transmitter on satellites would enable observing satellites with VLBI telescopes
- observations to satellites
 - enable interesting scientific applications
 - place new requirements

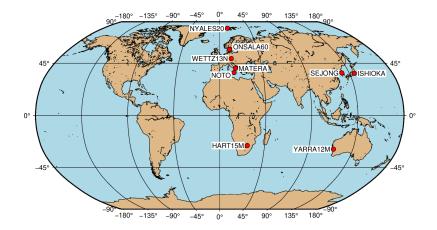
 \rightarrow newly developed satellite scheduling module in VieSched++

Satellite observations with VLBI **Applications**


- geodetic space ties for connecting reference frames
- improvement of geodetic products, in terms of ITRF
- determination of absolute orientation of satellite constellation \rightarrow Right Ascension of Ascending Node (Ω)

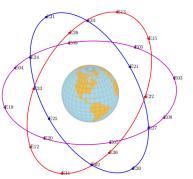
Satellite observations with VLBI Requirements

- cross-eyed observation geometry
- \blacksquare satellite is moving while observing \rightarrow antenna has to follow
- conditions have to be checked continuously during a scan
 - visibility (horizon mask)
 - antenna slew rates
 - sun distance
 - cable wrap

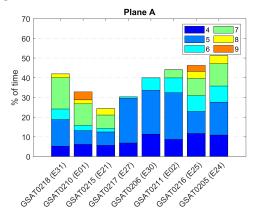


Visibility study of Galileo satellites

- 24 hour IVS R1978 session
- December 21, 2020 00:00 UTC
- 9 station network
- satellite scheduling module of VieSched++ was used to determine all possible observations to Galileo satellites
- observations are evaluated through
 - visibility (number of stations)
 - observation geometry

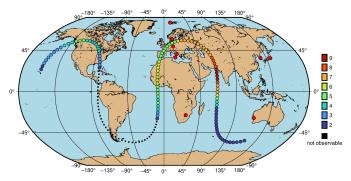

VLBI network

Galileo satellite system


- 24 satellites¹
- Medium Earth Orbit (MEO) in 23.222 km altitude
- \blacksquare three orbital planes (A, B and C) \rightarrow spaced by 120°
- inclination of 56°
- eight satellites in each plane \rightarrow angular distance of 45°
- ground track repeat period of 10 days

¹considering the current number of active satellites

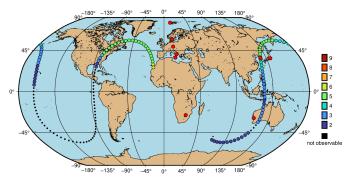
Visibility in percent



Percentage of time the satellites in Plane A, ordered by their slot number, are observable during the 24-hour IVS-R1978 session on December 21, 2020, color-coded by the number of stations from which the satellite is observable. A cut-off elevation angle of five degrees is considered.

Visibility GSAT0216 (E25)

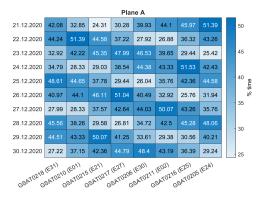
rather high visibility due to course of ground track


Ground track of GSAT0216 (E25) during the 24-hour IVS-R1978 session on December 21, 2020. The dots represent the position of the satellite over Earth in a ten minute interval color-coded by the number of stations from which the satellite is visible. The smaller black dots represent positions where the satellite is not visible from at least two stations.

27.04.2021

Visibility GSAT0217 (E27)

rather low visibility due to course of ground track


Ground track of GSAT0217 (E27) during the 24-hour IVS-R1978 session on December 21, 2020. The dots represent the position of the satellite over Earth in a ten minute interval color-coded by the number of stations from which the satellite is visible. The smaller black dots represent positions where the satellite is not visible from at least two stations.

27.04.2021

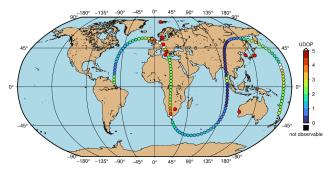
Visibility over repeat period

visibility of satellites is changing from day to day

Percentage of time the satellites in Plane A, ordered by their slot number, are observable from at least four stations over a period of 10 days starting on December 21, 2020. A cut-off elevation angle of five degrees is considered.

27.04.2021

Observation geometry


- precision of UT1-UTC depends on observation geometry
- UT1-UTC Dilution of Precision factor as indicator for sensitivity of satellite observation to UT1-UTC
- Iow UDOP factor means
 - better observation geometry
 - observation is more sensitive to UT1-UTC

 \rightarrow see Appendix

Observation geometry GSAT0102 (E12)

low UDOP, if visible for stations forming E-W baselineshigh UDOP, if visible for stations forming N-S baselines

Ground track of GSAT0102 (E12) during the 24-hour IVS-R1978 session on December 21, 2020. The dots represent the position of the satellite over Earth in a ten minute interval color-coded by the values of the UDOP factor. The smaller black dots represent positions where the satellite is not visible from at least two stations.

27.04.2021

Summary

- satellite observations provide new possibilities
- no difference of visibility of the
 - three orbital planes
 - satellites within the plane
- visibility and observation geometry depends on
 - distribution of observing stations
 - session time
- Galileo exhibit high visibility

References

- Belli, F. (2020). Transfer of absolute orientation to Galileo orbits with VLBI, Master thesis, Technical University of Munich.
- Hellerschmied, A. (2014). Observations of GNSS satellites with VLBI antennas - From observation planning to practical implementation, Master thesis, Technical University of Vienna.
- Wolf, H. (2021). Satellite Scheduling with VieSched++, Master thesis, Technical University of Vienna.
- Schartner, M. & Böhm J. (2019). VieSched++: A New VLBI Scheduling Software for Geodesy and Astrometry, PASP 131(1002):084501, doi: https://doi.org/10.1088/1538-3873/ab1820
- VieSched++: https://github.com/TUW-VieVS/VieSchedpp/

Appendix

UT1-UTC Dilution of Precision

$$A = \begin{pmatrix} \frac{\delta \Delta \tau_1}{\delta U T 1} \\ \vdots \\ \frac{\delta \Delta \tau_n}{\delta U T 1} \end{pmatrix}$$
$$N = A^{\mathsf{T}} A = \left(\frac{\delta \Delta \tau_1}{\delta U T 1}\right)^2 + \dots + \left(\frac{\delta \Delta \tau_n}{\delta U T 1}\right)^2$$

- A as design matrix
- $\Delta \tau_i$ as observed delay of reception times of two stations • $\frac{\delta \Delta \tau_i}{\delta U T 1}$ as partial derivative of $\Delta \tau_i$ with respect to UT1

UT1-UTC Dilution of Precision

- \blacksquare UDOP factor as square root of trace of cofactor matrix $Q_{\rm xx}$
- sensitivity of VLBI observations to satellites to UT1-UTC (Belli, 2020)

$$Q_{XX} = N^{-1} = \frac{1}{\left(\frac{\delta\Delta\tau_1}{\delta UT1}\right)^2 + \dots + \left(\frac{\delta\Delta\tau_n}{\delta UT1}\right)^2}$$
$$UDOP = \sqrt{\frac{1}{\left(\frac{\delta\Delta\tau_1}{\delta UT1}\right)^2 + \dots + \left(\frac{\delta\Delta\tau_n}{\delta UT1}\right)^2}}$$

UT1 - UTC Dilution of Precision (Belli, 2020)

a_k represents an entry in the design matrix for one baseline

$$a_{\mathsf{k}} = ec{e}_3 \cdot \Big(rac{ec{y}}{R} imes \Big(rac{ec{R}_1}{
ho_1} - rac{ec{R}_2}{
ho_2}\Big)\Big)$$

- **\vec{R}_1** and \vec{R}_2 as position vectors of the two VLBI antennas forming the baseline
- **\vec{y}** as position vector of satellite in the Earth-fixed frame
- $\rho_i = \|\vec{y} \vec{R}_i\|$ as range from each station to the satellite
- R as Earth radius
- \vec{e}_3 as unit vector in z-direction
- \blacksquare a_k represents the sensitivity of the range difference $\Delta\rho$ to the Earth rotation angle
 - $\Delta \rho = \rho_1 \rho_2$ as difference between the ranges from two stations, forming a baseline, to the satellite

UT1 - UTC Dilution of Precision (Belli, 2020)

• UDOP factor as square root of trace of cofactor matrix Q_{xx}

$$UDOP = \frac{1}{\sqrt{a_1^2 + a_2^2 + \dots + a_n^2}}$$

- a_k with k = 1, 2, ... n represents entries in design matrix for n baselines
- \blacksquare low UDOP factor \rightarrow satellite observation is more sensitive to observe UT1-UTC

Visibility study of Galileo satellites from a VLBI network

Wolf H.¹, Böhm J.¹, Schartner M.², Hugentobler U.³

¹TU Wien, Department of Geodesy and Geoinformation ²ETH Zürich, Department of Civil, Environmental and Geomatic Engineering ³TU München, Institute for Astronomical and Physical Geodesy