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Abstract
Within this work, a new geodetic very long baseline interferometry (VLBI) scheduling approach inspired by evolutionary
processes based on selection, crossover and mutation is presented. It mimics the biological concept “surviving of the fittest”
to iteratively explore the scheduling parameter space looking for the best solution. Besides providing high-quality results,
one main benefit of the proposed approach is that it enables the generation of fully automated and individually optimized
schedules. Moreover, it generates schedules based on transparent rules, well-defined scientific goals and by making decisions
based on Monte Carlo simulations. The improvements in terms of precision of geodetic parameters are discussed for various
observing programs organized by the International VLBI Service for Geodesy and Astrometry (IVS), such as the OHG, R1,
and T2 programs. In the case of schedules with a difficult telescope network, an improvement in the precision of the geodetic
parameters up to 15% could be identified, as well as an increase in the number of observations of up to 10% compared
to classical scheduling approaches. Due to the high quality of the produced schedules and the reduced workload for the
schedulers, various IVS observing programs are already making use of the evolutionary parameter selection, such as the
AUA, INT2, INT3, INT9, OHG, T2 and VGOS-B program.
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1 Introduction

Very longbaseline interferometry (VLBI) (Sovers et al. 1998;
Schuh and Böhm 2013) is, together with the global naviga-
tion satellite system (GNSS), satellite laser ranging (SLR),
and Doppler orbitography and radiopositioning integrated
by satellite (DORIS), one of the geometric space geodetic
techniques. By measuring the difference in arrival time from
signals of extra-galactic radio sources, it plays an important
role in a broad range of applications. For example, VLBI
is used in the determination of terrestrial reference frames
(Altamimi et al. 2016), in particular of its scale, and deter-
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mines the celestial reference frame in radio frequencies (Fey
et al. 2015; Charlot et al. 2020). Furthermore, it is the only
technique capable of determining the full set of earth orien-
tation parameters (EOPs) (Petit and Luzum 2010), which are
critical for positioning and navigation in space and on Earth.

Due to its observing principle, VLBI observations need
to be coordinated between telescopes. When multiple tele-
scopes observe the same radio source simultaneously, this is
called a scan. Within a scan, each pair of telescopes forms
one baseline and provides one observation. For sustainable
resource management, international collaborations such as
the International VLBI Service for Geodesy and Astronomy
(IVS) (Nothnagel et al. 2017) organize VLBI experiments,
so-called sessions. In general, VLBI sessions can be divided
into two groups:

– 24-h long experimentswith about ten globally distributed
telescopes. These sessions are typically used to determine
station and source coordinates, as well as EOPs and geo-
physical parameters.

– 1-h long so-called intensive experimentswithmostly two,
but sometimes up to five telescopes. These sessions are
performed solely to measure the Earth rotation angle
expressed through dUT 1 (Petit and Luzum 2010).
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For each session, an observing schedule is generated and
distributed to the telescopes. This schedule is of utmost
importance since it directly determines which observations
are available for analysis.

Over the last years, substantialwork has been conducted to
improve the observation schedules for geodetic VLBI. Most
of this work was related to intensive sessions. Uunila et al.
(2012) highlighted the importance of observations near the
corners of the mutually visible sky between telescopes par-
ticipating in intensive sessions. This was later confirmed by
Baver and Gipson (2015). A different scheduling approach
was demonstrated by Leek et al. (2015), who studied the
use of so-called impact factors for intensive scheduling
with a special emphasis on twin-telescopes. Recently, a new
approach was presented by Corbin et al. (2020) based on
linear programming. Additionally, many studies were inves-
tigating the impact of different source lists on intensive
scheduling and the relation between sky-coverage and source
brightness, see Baver and Gipson (2014), Gipson and Baver
(2016), Baver and Gipson (2020).

For 24-h sessions, recent research focused on improving
schedules for the next-generation VLBI network, the VLBI
global observing system (VGOS) (Petrachenko et al. 2012;
Niell et al. 2018). Sun et al. (2014) demonstrated the useful-
ness of a source-based scheduling approach for VGOS,while
(Schartner and Böhm 2020) demonstrated that a combina-
tion of different optimization criteria will lead to substantial
improvement.

Additionally, a paper by McCallum et al. (2017) inves-
tigated a so-called star scheduling mode for legacy 24-h
sessions, which was used to optimize the observations of
weak radio sources in the southern hemisphere by evaluating
only observations between a sensitive telescope and multiple
weak telescopes.

An alternative automated scheduling strategy was pro-
posed byLovell et al. (2016) and Iles et al. (2018) in particular
for the Australian AuScope VLBI array (Lovell et al. 2013).
In contrast to classical scheduling, this approach, called
“dynamic scheduling”, does not generate the full schedule
in advance of the session. Instead, the schedule is generated
and distributed in small blocks in near real time. Via a web-
interface, stations can dynamically drop in and out of the
session leading to higher flexibility.

Within this work, we are demonstrating a new, general
VLBI scheduling approach that can be used for both 24-h
and intensive sessions. This approach is based on opti-
mizing scheduling via large-scale Monte Carlo simulations
(Metropolis and Ulam 1949) in comparison with evolution-
ary algorithms (Jong 2006; Eiben and Smith 2015). Besides
providing high-quality schedules, one main benefit of this
approach is that it is self-learning and can thus be used for
all types of sessions, enabling fully automated scheduling
with every session being individually optimized. Due to the

flexibility of the approach, the reduced workload through the
automation, combined with the high quality of the results,
it is now used to schedule multiple official IVS observing
programs, such as AUA, INT2, INT3, INT9, OHG, T2 and
VGOS-B.

In the following sections, we will describe the scheduling
approach that is used (Sect. 2.1) as well as the evolutionary
algorithm used to optimize the schedule (Sect. 2.2). In Sect.
3.1, the best set of hyperparameters is identified and later
used to evaluate the algorithm. At first, a specific and dif-
ficult VLBI session, namely OHG127, is analysed in detail
(Sect. 3.2), followed by a general evaluation based on all
OHGsessions in the years 2019 and 2020 (Sect. 3.3). Further-
more, R1 sessions (3.4) from October 2020 until December
2020, as well as all T2 sessions from 2019 and 2020 (3.5),
are evaluated by using the evolutionary algorithm. Addi-
tionally, the potential and limitations of the algorithm are
briefly discussed for intensive sessions (3.6). Besides produc-
ing high-quality schedules, the main benefit of the proposed
algorithm is that it can run fully automated. This fact and
the resulting advantage in terms of reduced human-bias are
further discussed in Sect. 4. Finally, Sect. 5 summarizes the
results.

2 Method

2.1 Scheduling approach

Recent studies by Schartner and Böhm (2020), Schartner
et al. (2020) have demonstrated the benefit of optimiz-
ing every schedule individually based on a combination of
optimization criteria such as sky-coverage, number of obser-
vations, number of scans, and mitigation of idle time. This
approach is now applied to various official IVS observ-
ing programs, such as AUA, INT2, INT3, INT9, OHG, T2,
VGOS-B and parts of the EU-VGOS program aswell asmul-
tiple non-IVS observing programs. The general idea is that
the different network geometries, observing rates, scientific
purposes, and available sources of eachVLBI session require
a different balance between these optimization criteria to pro-
duce the best result. The optimal balance can be found based
on large-scale Monte Carlo simulations. For this purpose, a
new VLBI scheduling software, VieSched++ (Schartner and
Böhm 2019), was developed that can be used to test differ-
ent balances of optimization criteria in scheduling based on
simulations.

To understand the concept of the proposed algorithm, it
is necessary to discuss the generation of a geodetic VLBI
schedule first. A schedule is generated scan-by-scan. For
every scheduled scan, the scheduling software is evaluat-
ing all possible radio sources and thus all possible scans
that could potentially be observed based on the previously
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mentioned optimization criteria opt . Internally, a score per
optimization criterion scoreopt is assigned to each potential
scan. These optimization criteria scores are further combined
using so-called weight-factors ωopt to calculate a total score
per potential scan based on Eq. 1.

score =
∑

opt

(
ωopt · scoreopt

)
(1)

The potential scan with the highest total score is selected
and assigned to the final schedule. After a scan is fixed, the
process is repeated until all scans are selected and the sched-
ule is finished. Thus, the weight-factors ωopt determine how
much an optimization-criterion contributes to the decision
which scan should be scheduled. Therefore, it is important
to pick reasonable values for these weight factors to find a
good balance of all optimization-criteria.

Besides theweighted sumof the individual scores from the
optimization criteria, additional parameters can influence the
calculation of the total score and thus the scan selection.Most
importantly, it is possible to assign every station sta a certain
weightωsta. Increasing the station weight is regularly done to
incorporate telescopes more prominently into the schedule,
in case they would be otherwise scheduled with few scans
only. Therefore, Eq. 1 is extended with the product over all
individual station weights.

score =
∑

opt

(
ωopt · scoreopt

) ·
∏

sta

ωsta (2)

More information about how the scores per optimization
criteria scoreopt are calculated as well as a full discussion
on the scan selection can be found in Schartner and Böhm
(2019).

Within this work, the scheduling is performed as sophis-
ticated as possible to yield realistic results. This means that
subnetting and fillin-modes are enabled (see Gipson (2016)
for more details), as well as iterative source selection with a
recursive scan selection (Schartner and Böhm 2019). Addi-
tionally, down time due to simultaneous intensive sessions is
applied.

2.1.1 24-hour sessions

The proposed optimization of the 24-h sessions is based on
the four most important optimization criteria and their cor-
responding weight-factors ω

– improvement in sky coverage ωsky

– the number of observations per scan ωobs

– the duration of each scan ωdur

– the mitigation of long idle time ωidle

and the individual weights of the stations ωsta. These are the
primary parameters that are optimized by the evolutionary
algorithm described in Sect. 2.2. Thus, for a VLBI session
with 10 telescopes, the dimension of the parameter space is
4 + 10 = 14 with four dimensions representing the weight-
factors ωopt and the rest from the station weights ωsta. Using
a classical multi-scheduling (MS) approach (Schartner and
Böhm 2019) with only 4 tested values per parameter and a
grid-wise combination of these values would lead to ≈ 414

(more than 200 million) schedules that would need to be
evaluated and is thus not feasible. In contrast, by defining the
number of schedules to be generated and by randomly pick-
ing the values of the parameters, only a very sparse sampling
of the parameter space would be achieved.

This is where the evolutionary algorithm comes into play.
Instead of doing a grid-wise combination or a pure random
selection, it iteratively adjusts the parameter values and thus
avoids areas in the parameter space that would likely lead to
poor schedules based on its previous experience with close-
byparameter values. Therefore, the total number of schedules
that need to be evaluated to achieve a good and dense sam-
pling of the most promising areas in the parameter space is
significantly less.

2.1.2 Intensive sessions

Intensive schedules are typically generated in a way that
all telescopes are always observing the same radio source
together. Therefore, only two optimization criteria are rele-
vant, namely ωsky and ωdur since the number of observations
per scan is constant and there will be no long idle times. For
the same reason, there is no need to assign individual weights
to the stations since their impact would be the same for all
scans.

However, following the suggestions of Uunila et al.
(2012) andBaver andGipson (2015), observations of sources
located at the corners of the mutually visible sky are bene-
ficial for estimating dUT 1, the primary parameter derived
from intensive sessions. In VieSched++, it is possible to
set a time cadence in which these observations should be
enforced. The software will start by observing one source
located at one corner and after tc s, it will be forced to observe
a source located at the second corner and so on. For the inten-
sive scheduling setup, the two weight-factors ωsky and ωdur

and the corner switch cadence tc are the primary scheduling
parameters that are optimized via the evolutionary algorithm.
Thus, the dimension of the parameter space is only 2+1 = 3.

2.2 Evolutionary algorithm

Evolutionary algorithms (EA) are a subsection of evolution-
ary computation and thus belong to the field of artificial
intelligence (Fogel 2006; Eiben and Smith 2015). They are
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Fig. 1 Flowchart of the
proposed ES strategy including
a simplified graphical
visualization

inspired by biological concepts such as the concept of natu-
ral selection (Darwin 1859). Thus, they simulate evolution to
explore the solutions for complex real-world problems based
on an incrementally changing system Vikhar (2016).

For optimizing geodetic VLBI scheduling, an EA based
on selection, mutation, and crossover was chosen following
the concept of evolution strategy (ES) summarized in Fogel
(2006). Closely related to ES are the so-called genetic algo-
rithms (Mitchell 1996). In geodesy, genetic algorithms are
regularly used to solve optimization problems (Saleh and
Chelouah 2004; Baselga and García-Asenjo 2008; Coulot
et al. 2009; Asgarimehr and Hossainali 2015). In practice,
there is not always a clear distinction between an evolution-
ary strategy and a genetic algorithm.Within this work, we are
mostly following Fogel (2006) and Eiben and Smith (2015)
with respect to the nomenclature that is used.

The aim of the ES is to optimize scheduling parameters,
resulting in a schedule with high precision for the estimated
geodetic parameters. Figure 1 visualizes the concept of the
ES.

In short, the scheduling parameters that will be opti-
mized are defining the n-dimensional parameter space to
be exploited. Every point in this parameter space represents
one schedule, represented by an n-dimensional vector p. By
starting with a random selection of several instances of p,

the corresponding schedules can be generated, simulated and
analysed, see Sect. 2.2.1. As noted, the quality of the sched-
ules is mostly determined by the precision of the estimated
geodetic parameters, quantified through a fitness function,
further described in Sect. 2.2.2. Based on the fitness function,
the best parameter vectors are selected. The selected parame-
ter vectors are further combined and adjusted as discussed in
Sects. 2.2.3 and 2.2.4 to form new parameter vectors. Based
on the new parameter vectors, new schedules are generated
and evaluated and the whole process starts over again.

2.2.1 Initialization

First, an initial starting population of m0 n-dimensional
parameter vectors

pi,g0 = (
v1 v2 v3 . . . vn

)�
(3)

(called individuals) is generated with i ∈ [0,m0) referring to
one particular parameter vector within this population and g0
standing for the initial generation. Within the context of ES,
the parameter vectorp represents the genes of the individuals,
while the individual values v their genetic code. The initial
genetic codes are selected using random values with some
restrictions: As discussed in Sect. 2.1, parts of the scheduling
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parameters are the weight-factors of the optimization crite-
ria ωopt and the individual station weights ωsta. Both of these
groups of parameters are multiplicative effects for determin-
ing the score of a scanduring the scan selection algorithm (see
Sect. 2.1). Thus, only the relative ratio between the param-
eters within one group is of importance, see Schartner and
Böhm (2019) and in particular Schartner et al. (2020) for a
detailed discussion on this topic.

The parameter space and thus the parameter space vector
p can be divided into two parts, a sub-space for the weight-
factors with the corresponding sub-parameter vector popt and
a sub-space for the individual station weights with the corre-
sponding sub-parameter vector psta.

p =
(
popt
psta

)
(4)

Since only the relative ratio between the parameterswithin
one group is of importance, the parameter vectors of each
sub-space can be scaled to arbitrary length without changing
the scheduling result. Thus, all parameters listed in Eq. 5 will
lead to identical schedules.

popt =

⎛

⎜⎜⎝

ωsky

ωobs

ωdur

ωidle

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1
2
3
4

⎞

⎟⎟⎠ ≡

⎛

⎜⎜⎝

2
4
6
8

⎞

⎟⎟⎠ ≡ 1

‖popt‖2 · popt

=

⎛

⎜⎜⎝

0.1826
0.3651
0.5477
0.7303

⎞

⎟⎟⎠ (5)

The same is valid for psta. By scaling all instances of the
sub-parameter vectors to the same length, the possible sub-
parameter space reduces to the surface of a n-sphere.

Although the parameter scaling does not necessarily have
to be done based on two individual sub-parameter spaces but
rather could also be done at once for all dimensions, there is
significant benefit for splitting it up. For example, the length
of the sub-parameter vectors can be chosen individually, this
allows for an easy interpretation of the result. In practice, the
length of the sub-parameter vector popt is typically set to one
to directly see the ratio between the different optimization
criteria. In contrast, the length of the sub-parameter vector
psta is typically set to nsta. Therefore, if all stations have
equal weight, their weight-value is 1.00. This definition is
also consistent with other scheduling packages such as sked
Gipson (2016), where the default station weight is also set to
1.00.

After the genes from the individuals of the initial pop-
ulation are initialized, the scheduling process can start. As
already noted, every pi represents the input parameters used
to generate one schedule. Every schedule is further simulated
1000 times, using state-of-the-art simulation approaches.The

simulations consist of three parts: simulation of clock drifts
as a sum of random walk and integration random walk (Her-
ring et al. 1990), simulation of the tropospheric effects where
temporal and spatial correlation is taken into account as dis-
cussed in Nilsson et al. (2007), and white noise. Based on the
simulations, the mean formal errors and repeatability values
of the estimated geodetic parameters can be determined to
calculate the fitness function.

So far, the ES is conceptually identical to a classical MS
approach with random initialization. The innovation starts
after the initial population is computed. Thus, the ES can be
seen as an extension of the classical MS approach.

2.2.2 Selection

From the current g j and previous (g0 until g j−1) genera-
tions, a certain amount of individuals are selected to serve
as parents for the offspring. Thus, it is allowed that the same
individual serves as a parent in multiple future generations.
The selection of the parents can be done based on the best per-
forming individuals, randomly, or as amixture of both (Fogel
2006). To quantify the best performing individuals, a fitness
function f is calculated based on the mean formal errors
m f e and repeatabilities rep of the simulated EOP (X PO ,
Y PO , dUT 1, NUT X , NUTY ) and the 3d-station coordi-

nate vector sta =
√

δ2x + δ2y + δ2z . In the following, we call

the EOP and/or station coordinates, depending on the goal of
the VLBI session, the “target parameters” x of the session.
Additionally, other metrics might also be added to the target
parameters. For example, in many cases, a high number of
observations is a good indicator for a good geodetic result.
Thus, it makes sense to also add the number of observations
(#obs) to the target parameters of the session.

x =

⎛

⎜⎜⎜⎜⎜⎝

x1
x2
x3
...

xn

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

x#obs
xX PO

xY PO
...

xstansta

⎞

⎟⎟⎟⎟⎟⎠
(6)

The definition of the fitness function is not straightforward
for the following reasons. In most geodetic VLBI sessions,
multiple geodetic parameters are of interest (e.g. EOP and
station coordinates). Additionally, the sensitivity of the indi-
vidual geodetic parameters might be different based on the
network geometry (e.g. the network might be more sensitive
to dUT1 in comparison with polar motion). Thus, a simple
average over all parameters is problematic and might favour
some parameters, which is unintended. For example, con-
sider the case of a network, where the range of polar motion
sensitivity is between 50 and 150 μas, while the range of 3d-
station coordinate accuracy is between 5 and 10 mm. One
needs to find a way to properly compare these values.
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Furthermore, some schedules might be generated that are
exceptionally bad and produce outlier values. Thus, the fit-
ness function needs to be—at least to some degree—invariant
to outliers.

Finally, the simulations provide access to two metrics,
the mean formal errors and the repeatabilities. In case of
perfect simulations, these two metrics should be identical.
However, due to imperfections in the simulations and due to
the simplifications applied during parameter estimation, they
are not completely identical and can both be used to quantify
the scheduling performance.

To overcome these problems, the values of the target
parameter xi (e.g. dUT 1 or #obs) over all individuals are
first scaled, in order to provide values between zero and one
to solve the issue of the different parameter value ranges
between the target parameters. The scaling is done linearly,
between the best achieved value xi,0 (the highest number of
observations or the lowestm f e, rep that were achieved) and
the 75% quantile xi,.75 of the worst achieved value (the low-
est number of observations or the highest m f e, rep). Thus,
the scaled target parameter values xi,s are calculated based
on Eq. (7) leading to one for the best value (xi = xi,0) 400
and zero for the 25% of the worst values (xi > xi,.75).

xi,s =
{
xi ≤ xi,.75 1 − xi−xi,0

xi,.75−xi,0

xi > xi,.75 0
(7)

We will again note here that the best achieved value might be
the highest value (in case of #obs) or the lowest value (in case
of the simulated geodetic parameter precision). By using the
75% quantile instead of the worst present value, the scaling
is invariant to < 25% outlier values providing bad values.
Exceptionally good values are included in the scaling since
finding parameters leading to good values is the main goal
of the ES and in practice, this has been proven to be the right
approach.

Next, the fitness function is computed as a weighted sum
based on all scaled target parameters xi,s . The weights ω are
defined based on the scientific goal of the session.

f = ω� · x =

⎛

⎜⎜⎜⎜⎜⎝

ω1

ω2

ω3
...

ωn

⎞

⎟⎟⎟⎟⎟⎠

�

·

⎛

⎜⎜⎜⎜⎜⎝

x1
x2
x3
...

xn

⎞

⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎝

ω#obs

ωX PO

ωY PO
...

ωstansta

⎞

⎟⎟⎟⎟⎟⎠

�

·

⎛

⎜⎜⎜⎜⎜⎝

x#obs
xX PO

xY PO
...

xstansta

⎞

⎟⎟⎟⎟⎟⎠
(8)

Finally, for a better interpretability of the result, f is scaled
between zero (worst fitness) and one (best fitness) over all
individuals—the higher the fitness, the better the scheduling
parameters. The fitness function is once calculated based on
the mean formal errors f (mfe) and once calculated based on
the repeatabilities f (rep). They are further combined with a
70% ratio for the f (rep) and a 30% ratio for the f (mfe).

f = 0.7 · f (rep) + 0.3 · f (mfe) (9)

The 70/30 ratio was chosen based on experience in schedul-
ing and based on simulations of real experiments.

As noted before, the selection of the parents for the off-
spring can be done based on the fitness of the individuals,
by selecting a percentage of nbest individuals. However, one
problem of ES is a phenomena called “genetic drift” Yu
and Gen (2010) that might cause the algorithm to converge
towards a wrong solution. Also, it might happen that the
algorithm keeps stuck in a local minima. To overcome this
problem, a selection of nrand random individuals is selected
to serve as parents for the offspring in addition to the best
performing ones. The inclusion of randomly picked parents
helps to mitigating genetic drifts since they lead to a higher
genetic variance during crossover and mutation as can be
seen in Sects. 2.2.3 and 2.2.4 and they help to overcome
local minima in the fitness function. However, this comes at
the cost of a slower learning rate.

2.2.3 Crossover

Based on the selected parents, mi+1 offspring individuals
pi,g j+1 are formed for the next generation g j+1. Every off-
spring is calculated based on a number of npar parents p̂,
where npar can be defined as a hyperparameter as shown in
Sect. 3.1. The initial genetic code of the offspring is the aver-
age over the genetic codes of the parents.

pg+1 = 1

npar
·
npar∑

p̂. (10)

2.2.4 Mutation

Finally, for every offspring, a normal distribution mutation is
performed. The reason for the mutation is, again, to increase
the variability of the genetic codes in order to overcome local
minima and to better explore the solution landscape. The
mutation is controlled by two hyperparamters, a mutation
factor δ and a minimummutation factor δmin. The amount of
mutation is calculated based on the differences in the genetic
code from the parents. For every element vk with k ∈ [1, n]
in the parameter vectors

p = (
v1 v2 v3 . . . vn

)�
(11)
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the corresponding minimum and maximum values from the
parent vectors, vk,min and vk,max, are taken to calculate the
value range r .

rk = vk,max − vk,min (12)

Next, theminimumrequiredmutation range rmin is calculated
based on the initial genetic code in the offspring parameter
vector, see Sect. 2.2.3.

rk,min = vk · δmin (13)

The final mutation range rmut is the maximum between rk
and rk,min.

rk,mut = max
{
rk, rk,min

}
(14)

Finally, the mutated value vk,mut of each element from the
offspring parameter vector can be calculated using

vk,mut = rk,mut · δ · N (0, 1) (15)

where N (0, 1) stands for a normally distributed random
value with mean zero and variance one.

2.2.5 Iteration

The newly generated offspring individuals are populating
the next generation of parameter vectors pi,g j+1 . Based on
the genetic code of every newly generated offspring, a new
schedule is generated, simulated, analysed and evaluated and
the whole process repeats. This continues until a maximum
number of generations are reached or until a termination
criterion is fulfilled. In case proper hyperparameters are
selected, the algorithm converges after some iterations.

3 Results

3.1 Hyperparameter tuning and comparison with
classical multi-scheduling approach

The following hyperparameters can be used to set up the
evolutionary scheduling algorithm:

– n number of generations
– m0 number of individuals in the initial population
– m j number of individuals for generation j > 0
– nbest number of parents selected based on fitness function

(expressed via a percentage of m j )
– nrand number of parents selected randomly (expressed via
a percentage of m j )

– npar number of parents used during crossover

Fig. 2 Station network used to define a good set of hyperparameters

– δ mutation factor
– δmin minimum mutation range.

The parameters n, m0, and m j define how many individuals
will be generated and thus mainly determine the total run
time. The parameters nbest, nrand, and npar define how the
crossover is performed. Finally, the parameters δ and δmin

determine how the mutation is done.
The selection of appropriate hyperparameters was first

done for a typical R1 session setup with eight stations as
shown in Fig. 2 and later evaluated for intensive sessions.

For this test, the fitness functionwas defined using 1.00 for
ω#obs, 18 for theωstai , and 0.2 each of the fiveωEOP. Thus, the
total number of observations, the simulated EOP precision
and the simulated station coordinate precision contribute to
an equal amount to the fitness of the individuals.

The hyperparameter tuning was done iteratively. First, the
algorithm was tested based on randomly selected values to
get an understanding of which parameter values provide rea-
sonable results. From this investigation,m0 was fixed to 256,
m j was fixed to 128 and n was fixed to 10 (g0–g9), leading
to a total of 1408 schedules. During the initial tests, this
has been proven to be a good compromise between com-
putational cost and parameter space sampling. Next, based
on the initial tests, a grid-wise combination of nbest = {5%,
10%, 15%, 20%, 25%}, nrand = {0%, 2.5%, 5%, 7.5%, 10%}
and δ = {0.3, 0.4, 0.5, 0.6, 0.7} was investigated. From this
search, the values nbest = 20, nrand = 5 and δ = 0.4 were
found to perform well. In general, the δ parameter had the
biggest impact on the result. Slight changes of nbest and nrand
did not have a significant impact, for example, nbest = 10,
nrand = 2.5 and δ = 0.4 also led to good results.

From a biological point of view, the obvious candidate for
the number of parents npar is two.However, for a related algo-
rithm, called genetic algorithm (Mitchell 1996), experiments
with multi-parent setups have been proven to be beneficial
in some cases, see Eiben et al. (1994) and Ting (2005) for
example.

Within this study setup, the ES was tested with npar =
{1, 2, 3} and again by using different δ values since it was
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Fig. 3 Parameter evolution for n = 10, m0 = 256, m j = 128, nbest = 20%, nrand = 5%, npar = 2, δ = 0.4, and δmin = 5%. The abscissa lists the
individuals. Red lines mark new generations. The fitness is color-coded

expected that the number of parents influences the best selec-
tion of the mutation factor as well. However, based on this
investigation, two parents have been proven to be the opti-
mal number. Using only one parent and trying to provide the
genetic variation solely using δmin also did not provide good
results.

In general, investigations of δmin did not show any note-
worthy impact on the result. Setting this parameter to 5%
provided a good result overall.

In practice, the selection of hyperparameters was found
to be not critical for generating optimal schedules. Slight
changes in the hyperparameters do not influence on the qual-
ity of the generated schedule but rather how fast the algorithm
converges. However, by selecting very different hyperparam-
eters as the ones proposed here, it might happen that the
solution does not converge at all (especially when selecting
a very high value for δ) or it does not converge to a min-
ima in time (especially when selecting a very low value for
δ). However, the proposed values should work fine for all
session types and can serve as a starting point for further
hyperparameter tuning.

Figure 3 visualizes the evolution of the genetic code for a
good set of hyperparameters. This set of hyperparameters is
further used within this work.

Note, that Fig. 3 visualizes the evolution of a 12-
dimensional parameter space as 12 individual plots. Thus,

cross-connections between individual parameters cannot be
depicted properly. It can be seen that the fitness of the indi-
viduals increases over time. By comparing the evolution of
the four weight factors, one can see that especially ωdur is
converging towards a relatively large value of around 0.39,
followedbyω#obs with aweight of 0.28.Theweightsωsky and
ωidle converged towards 0.20 and0.13, respectively. Thus, the
optimal weight of ωdur is three times larger than ωidle.

By comparing the individual station weights, at first, it
seems like that the differences are not very big. However,
one has to keep in mind that Fig. 3 is only a simplified visu-
alization of a 12-dimensional parameter space.

It is very important to note that the individual station
weights do not reflect how important a station is for achiev-
ing good geodetic results. The station weights only reflect
how much attention a station needs during the schedul-
ing generation. It is easily possible that the most important
station for achieving good geodetic results is already incor-
porated well into the schedule using an average weight
of 1.00.

In general, interpretation of individual station weights has
been proven to be difficult, mostly due to the very complex
interactions between network geometry, telescope parame-
ters such as sensitivity and slew speed, source distribution
and requirements for good geodetic results. However, trends
can be identified in the station weights as well. By looking
at the actual numbers, one can see that in the final genera-
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tion, the highest weights belong to WETTZELL with 1.16,
followed by AGGO with 1.12. The high weight of AGGO is
not surprising, since AGGO is the least sensitive telescope in
this network and additionally is in a remote location and thus
needs special attention during scheduling. The highweight of
WETTZELLmight be explainedby the central location of the
telescopes. IfWETTZELL participates in a scan, many other
telescopes can participate as well. The lowest weights were
found for HARTRAO (0.83) and FORTLEZA (0.90). Thus,
the highest station weight is about 40% higher compared to
the lowest one. The low weight of FORTLEZA might be a
direct result of the high weight of AGGO. In case that AGGO
is participating in a scan, it is very likely that FORTLEZA
can also observe the same scan since it is more sensitive
than AGGO and in a similar location. Thus, a high weight of
AGGO is sufficient to properly incorporate FORTLEZA into
the schedule. However, as already noted, interpreting indi-
vidual station weights is rather difficult due to the complex
interactions and probably multiple combinations of weights
exist that lead to schedules of similar quality.

One very important detail in the context of optimizing
geodetic scheduling is that only the best performing individ-
ual is of interest since the parameters stored in the genetic
code of this individual will be used for the scheduling of
the session. Thus, a full convergence of all parameters is not
necessarily required. It is sufficient to produce one individ-
ual with very high fitness. However, since the mutation and
crossover steps are based on randomness (e.g. for the parent
selection and the amount of mutation), it is difficult to predict
when and how such an individual will be generated. Since
the average fitness rises from generation to generation, the
likelihood of producing a very fit individual increases over
time.

Figure 4 depicts the evolution of fitness as a function of
the individuals, comparing the ES with a classical multi-
scheduling (MS) approach with an identical computation
cost.

As already noted, the ES can be seen as an extension
to the classical MS approach. In fact, the first 256 sched-
ules, the initial population (g0), are generated based on a
classical MS approach and thus are identical to the first
256 schedules of the MS. The ES starts with generation
g1 where the individuals are generated as described in
Sect. 2.2.

Figure 4 further confirms that the ES increases the quality
of the schedules significantly. In the initial population (g0)
of the ES, most individuals had a fitness of 0.00. The rea-
son for this is the scaling of the target parameters based on
the best and the 75% quantile, as explained in Sect. 2.2.2. In
the initial population, the mean formal errors and repeatabil-
ity values of most geodetic parameters fell above the 75%
quantile resulting in a fitness of zero.

Fig. 4 Fitness as a function of individuals. Gray up-pointing triangles
depict fitness of individuals generated by the ES. Red lines delimit dif-
ferent generations of the ES. The dashed black line depicts the average
fitness from individuals of the ES in this generation. The solid black
line depicts the maximum fitness from individuals of the ES in this gen-
eration. Green down-pointing triangles depict the fitness of individuals
generated by a classical MS approach

The average fitness of the following generations increased
up to g7, while, in this particular example, an individual in
g4 already reached a very high maximum fitness; thus, it
would have been sufficient to compute fewer generations.
In the last generation, the maximum fitness was decreas-
ing again. This could happen due to the randomness of
the crossover and mutation process for the generation of
the new offspring. However, it is uncritical for several rea-
sons. As explained in Sect. 2.2.2, individuals can serve as
parents in all following generations. Thus, the high per-
forming individuals of previous generations will serve as
parents in the following generations as well. Thus, the max-
imum fitness of even more following generations is very
likely to increase again. Lastly, the best schedule is selected
based on the best performing individual from all genera-
tions, not only based on the individuals of the last generation.
In this case, the best performing individual was found in
g8.

The fitness of individuals generated by the MS approach
did not increase over time since every individual is ran-
domly initialized. Most individuals of the MS approach have
a fitness of zero, because they are scaled identical to the indi-
viduals of the ES for a fair comparisons. The MS approach
also managed to generate individuals that reach a reasonable
high fitness of almost 0.8. However, if we keep in mind that
the parameter initialization of the initial generation is done
randomly, one can conclude that this happens based on pure
luck and is not reliably the case.

The evolution of the genetic code for a typical intensive
sessions with just a three-dimensional parameter space (see
Sect. 2.1.2) is visualized in Fig. 5. Figure 5 is derived by
using similar hyperparameters as identified earlier. Since the
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Fig. 5 Parameter evolution for n = 10, m0 = 64, m j = 32, nbest =
20%, nrand = 5%, n par = 2, δ = 0.4, and δmin = 5%. The abscissa
lists the individuals. Red lines delimit different generations. The fitness
is color-coded

parameter space has way fewer dimensions as in case of a
24-h session, the initial population size m0 was set to 64,
while the population size of the following generations m j

was set to 32.
In this example, a representative intensive session (namely

I20310) was selected as a test subject. It is a 1-h long session
with KOKEE and WETTZELL and thus a good example of
a typical IVS intensive session.

As depicted in Fig. 5, the weight factors converge towards
extreme values. The duration weight factor ωdur converged
towards 0.9, while the sky-coverage weight factor converged
towards 0.1. This highlights that the algorithm is able to
find optimal parameters even if the optima lie in extreme
positions. It also conveys that genetic drifts leading to a
convergence towards the average parameter value is not a
problem in this case. The value for the corner switch cadence
tc converged towards 1500 s. It is noisier compared to the
weight factors, indicating that there exists not only one ded-
icated best value but a range of equally good values.

3.2 Session OHG127

The ES is first evaluated based on an tricky-to-schedule OHG
session, namely OHG127. The difficulty in scheduling the
OHG sessions is related to the station network. Figure 6
depicts the station network for session OHG127.

Many telescopes are in remote locations, mostly in the
southern hemisphere, and they suffer from poor sensitivity
(see Table 1).

Fig. 6 Station network for session OHG127

Table 1 OHG127 telescope sensitivity. Telescopes marked with an
asterisk mean that an elevation-dependent SEFD model exists and the
listed values correspond to the minimum SEFD

name SEFD X SEFD S
[Jy] [Jy]

FORTLEZA 5000 5000

HART15M 1050 1400

HOBART26* 1600 1400

KOKEE* 750 2000

OHIGGINS 18,000 10,000

SYOWA 7500 11,230

WARK12M 4200 4600

YARRA12M 4300 5800

This is especially problematic in comparisonwith the very
low recording rate of 128 Mbps and the lack of good sources
that are available on the southern hemisphere. To record a
usable observation, the signal-to-noise ratio (SNR) in the
observed bands should be reasonably high. When generating
a schedule, typically an SNR of 20 for X-band and 15 for
S-band is aimed for. The SNR is related to the station sensi-
tivities, expressed through the system equivalent flux density
(SEFD) of the two telescopes, the source flux density F , the
recording rate rec, the integration time sec, and a constant
efficiency factor η.

SNR = η
F√

SEFD1 · SEFD2

√
rec · sec (16)

Thus, when observing with telescopes of a high SEFD in
combination with a low recording rate, the simple solu-
tion would be to focus on bright sources only (high F) or
to increase the integration time (high sec). However, both
options come with their own problems. When focussing on
a small selection of bright sources, systematic effects due
to source structure might affect the solution significantly.
Additionally, the result is more strongly affected by possi-
ble issues in the source flux models. A further side-effect
is that the sky-coverage of the telescopes decreases, leading
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Fig. 7 Fitness as a function of individuals for OHG127. Red lines
delimit different generations. The dashed black line depicts the average
fitness in this generation. The solid black line depicts the maximum
fitness in this generation

to problems in resolving tropospheric time delays—one of
the major error sources in geodetic VLBI (Schuh and Böhm
2013). On the other hand, it is also not possible to increase
the integration time without bounds, for example, due to the
loss in coherence of the troposphere during correlation.

In practice, it is necessary to generate a schedule with
good sky-coverage and many sources despite the listed prob-
lems. Therefore, scheduling these sessions requires much
fine-tuning tomake sure that all stations are properly incorpo-
rated into the schedule. InOHG127, the network is composed
of eight telescopes, seven of which are located on the south-
ern hemisphere.

Figure 7 depicts the evolution of the fitness by using the
same hyperparameters as listed in Sect. 3.1. To reflect the
goal of the OHG session, the fitness function was defined
with a weight of 1.00 for #obs and 1

nsta
for the individual

stationweights. Theweights of theEOPwere set to 0.00 since
EOP estimates are not a primary goal of the OHG observing
program.

It can be seen that the average fitness improves from
generation to generation; thus, the ES manages to improve
the quality of the average schedule over time. However, as
already noted, in the context of scheduling, it is sufficient
to find one single schedule for a particular session that per-
forms very well. Therefore, themaximumfitness within each
generation is more important than the average fitness and
thus determines the success of the ES. It can be seen that,
although most individuals in the first generation have only
modest fitness (the average is just slightly above 0.00), some
individuals managed to reach a fitness of up to 0.4. This is
based on pure luck, since the parameter initialization of the
initial population is done randomly. In the following gen-
erations, more and more individuals manage to reach very
high fitness values. Here, the fittest individual was present
in g6 although the highest average fitness was achieved by
generation g9.

Fig. 8 Ratio in percent between the precision/#obs of the best schedule
generated using a classicalMS approach (initial population) and the pre-
cision/#obs of best schedule generated using ES for OHG127 schedule.
Improvements are highlighted in blue, while degradations are depicted
in red

The fitness function itself is an abstract quantification for
the scheduling performance. Therefore, Fig. 8 depicts the
relative improvement in the precision of the geodetic param-
eters. For comparison reasons, the relative improvement is
calculated between the schedule based on the fittest individ-
ual in the initial population (classical MS approach) and the
schedule based on the fittest individual over all generations
(new ES approach). It is to note, that in this comparison,
the ES comes with a significantly higher computation cost
since more schedules are generated. However, as we will
show in the following, the higher computation cost is worth
the improvement. Additionally, the higher computation cost
can be counter-weighted by the fact that it is possible to run
the algorithm fully automated by a cron job as discussed in
Sect. 4. Finally, the ES manages to find optimal solutions
faster than the MS approach that is solely based on random
initialization of individuals.

For this particular session, the precision of most geode-
tic parameters shows a better mean formal error and a
better repeatability based on the Monte Carlo simulations.
Additionally, the best performing schedule has 7% more
observations by using the ES instead of the general MS
approach. For this session, on average, the improvement in
terms of mean formal errors of the station coordinates is 7%
and for the repeatabilities is 8%, compared to the results
from the classical MS approach. The only exception is sta-
tion FORTLEZA,where a degradation of the precision can be
seen. Additionally, the repeatabilities of the polar motion and
nutation parameter in y-direction and the coordinate repeata-
bility of YARRA12M got slightly worse. The degradation
of some parameters can be explained by the fact that dif-
ferent geodetic products require different observations (e.g.
east-west baselines for dUT1, north-south baselines for polar
motion). In practice, it is impossible to fulfill all these require-
ments in one session. Furthermore, the ES did not try to
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Table 2 Optimal parameters
found by the ES for session
OHG127

Para Value Para Value Para Value Para Value

ωsky 0.25 ω#obs 0.18 ωdur 0.47 ωidle 0.11

ωFORTLEZA 1.00 ωHART15M 1.02 ωHOBART26 0.89 ωKOKEE 0.64

ωOHIGGINS 1.08 ωSYOWA 1.33 ωWARK12M 0.96 ωYARRA12M 1.08

Fig. 9 Average and maximum
fitness of all OHG sessions in
2019 and 2020. The abscissa
lists the generations. Solid lines
represent the average fitness of a
generation, while dashed lines
represent the maximum fitness
of a single individual inside a
generation

optimize the polar motion and nutation precision at all since
we set its weight to zero in the fitness function.

Table 2 lists the parameters of the fittest individual.
Similar as in Section (3.1), ωdur was identified as the most

important weight factor with a value of 0.47. For the individ-
ual station weights, this time SYOWA got the highest weight
of 1.33, followedbyYARRA12MandO‘Higgins, bothwith a
weight of 1.10. Surprisingly, Station KOKEE only received a
weight of 0.64. Although this weight is very small compared
to the rest of the stations, the telescope is well integrated
in the resulting schedule nevertheless. There are 181 scans
with 476 observations scheduled with KOKEE, while the
average number of scans and observations per station is 181
and 511 respectively. This, again, highlights the difficulty in
interpreting individual station weights.

3.3 OHG observing program

To further confirm the improvement, all OHG sessions of the
year 2019 and 2020 were investigated. In total, these are 12
sessions (OHG117–OHG128). Figure 9 depicts the evolution
of the average and maximum fitness of the OHG sessions.

From this plot, it can be seen that for all sessions, the
average fitness increased considerably over the generations.
More importantly, the maximum fitness increased as well.
Although for some sessions, relatively high fitness was
already achieved at g2, themaximumfitness of other sessions
increased until g7. In some cases, it seems like the fitness was
still rising even at the last generation; thus, it should make
sense to increase the number of generations that will be com-
puted for these sessions. Finally, Fig. 10 depicts the average

Fig. 10 Average improvement of all (12) OHG sessions in 2019 and
2020. The number above the abscissa depicts how often this parameter
was estimated within the 12 investigated OHG sessions. Improvements
are highlighted in blue, while degradations are depicted in red

parameter improvement over all 12 OHG sessions scheduled
in 2019 and 2020. Since the station network changed between
sessions, some parameters were estimated more often than
others. The numbers above the abscissa depict how often the
parameters were estimated.

It can be seen that, on average, all parameters benefit from
the ES. This is important, because it proves that the ES will
not lead to a degradation of some parameters over time. On
average and weighted by the number a station did participate
in a session, the improvement in themean formal errors is 8%
for the station coordinates and 6% for the EOPs compared to
the classical MS approach (initial population). The repeata-
bilities got improved by 7% for the station coordinates and
4% for the EOPs. The maximum improvement for the station
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Fig. 11 Average improvement
of all R1 session from October
until December 2020 compared
with a traditional MS approach.
The number above the abscissa
lists in how many sessions this
parameter was estimated within
the 14 investigated R1 sessions.
Improvements are highlighted in
blue, while degradations are
depicted in red

coordinates was found for SYOWA (mfe: 14%, rep: 10%).
Furthermore, the number of observations rose by an average
of 10%. These findings confirm the results presented in Sect.
3.2.

3.4 R1 observing program

TheR1 andR4 observing programs are indisputably themost
important 24-h sessions within the IVS. They are observed
every week, typically Mondays for the R1 and Thursdays
for the R4 program. Here, only the improvement in the R1
programwill be discussed since both observing programs are
similar in terms of network geometry and observing rate. The
R1 sessions are observed using a 256 or 512 Mbps recording
rate. Generally, the network is composed of globally dis-
tributed geodetic VLBI stations. Therefore, scheduling R1
sessions is simpler and does not suffer from the same prob-
lems as, for example, OHG sessions.

In the following, the R1 sessions from October 2020 until
December 2020 (R1967–R1979) will be discussed. For the
R1 observing program, the fitness function was defined with
a weight of 0.5 for #obs, 0.1 for X PO and Y PO , 0.3 for
dUT 1, NUT X and NUTY , and 1

nsta
for the individual sta-

tion weights. Thus, the fitness function covers all parameters
and is therefore very general. As discussed in Sect. 3.2,
it is hard to account for all the different requirements of
these parameters during scheduling, leading to difficulties
to receive good improvement for all geodetic parameters.
Figure 11 depicts the average relative improvements of the
13 investigated R1 sessions.

Although the improvement is small, almost all parame-
ters benefit from the ES approach. In addition, the number
of observations was increased by 3%. In this case, the main
problem is the very general definition of the fitness function
combinedwith the different requirements of the target geode-
tic parameters. Thus, it is not possible for the ES to improve
the solution any further. However, it can also be seen that in
this case, the ES does not lead to worse solutions, in fact,

the parameter precision was improved by 2% with up to 8%
for single stations. In contrast, the maximum degradation in
precision is only 0.7% for the repeatability of the nutation
parameter in x-direction.

3.5 T2 observing program

To conclude the investigations of 24-h sessions, the T2
observing program was studied. Within the IVS observing
programs, the T2 program plays a special role since they
make use of the biggest station networks with up to 20+ sta-
tions. Additionally, telescopes participate that usually do not
observe many geodetic VLBI sessions. Similar to OHG ses-
sions, in T2 sessions many low-sensitive stations are present,
which is especially critical since the recording rate is only
128 Mbps. Thus, the T2 sessions are especially tricky to
schedule. Still, the T2 observing program has a well-defined
scientific goal. They aim to provide highly accurate station
coordinates. To reflect this goal, the fitness function was
defined with a weight of 0.5 for #obs and 1

n for the indi-
vidual station weights and zero for the EOP.

Figure 12 depicts the average relative improvements of all
T2 sessions scheduled in 2019 and 2020. In total, these are
14 sessions (T2130–T2143).

It can be seen that most parameters benefit by the ES. The
highest improvement was achieved for the station coordi-
nates ofKOKEE (mfe: 9%, rep: 21%).However, this has to be
interpretedwith caution, sinceKOKEEdidonlyparticipate in
one session. The biggest reliable improvement was achieved
for station O’Higgins Sowie (mfe: 11%, rep: 9%). Although
the improvement is relatively small for many parameters,
most of them benefit by the ES approach. On average and
weighted by the number a station did participate in a ses-
sion, the improvement is 2% for the station coordinates and
also 2% for the EOPs. In addition, the accuracy of only a
few parameters degenerates compared to a traditional MS
approach.
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Fig. 12 Average improvement of all T2 sessions in 2019 and 2020 compared with a traditional MS approach. The number above the abscissa
depicts how often this parameter was estimated within the 14 investigated T2 sessions. Improvements are highlighted in blue, while degradations
are depicted in red

3.6 Intensive sessions

For an intensive session, the need of a ES for parameter
optimization is smaller since the parameter space has fewer
dimensions and the generation and simulation of millions
of intensive sessions is relatively inexpensive in terms of
computation resources. Therefore, it should be noted that
it is possible to scan the parameter space with thousands
of random individuals in few seconds using a classical MS
approach as well.

However, given the same setup as described in Fig. 5,
compared with a fitness function that is only determined by
#obs and the repeatability of dUT 1 with equal weights, the
repeatability of dUT 1 is reduced from 14.35 to 13.45μas,
while the mean formal error of this schedule was reduced
from 9.63 to 9.02μas. However, as already noted, in practice,
the same could have been achieved by simply generating
thousand schedules without ES and picking the best from
there.

Although the benefit of the ES is not that significant for
intensive sessions and similar results could be achieved by
a classical MS approach, it also does not lessen the result.
In fact, the result is at least as good as by using the classical
approach, and it converges faster to an optimum and works
well for intensives with more than two telescopes.

4 Automation

Arguably, one of the main benefits of the ES is that the algo-
rithm works well for all types of schedules without human
interaction. It only needs information about which hyperpa-
rameters to use, which parameters should be optimized and
what the goal of the session is to properly define a fitness
function. The hyperparameters can be defined a priori. In
practice, the values provided within this work (see Sect. 3.1)
have been proven to work well in all cases and no additional

Fig. 13 Individual station weights ωsta 	= 1.00 selected by schedulers
for R1 and R4 sessions in 2019

hyperparameter tuning per session is necessary. The goal of
the session and thus the fitness function can also be defined
a priori for every observing program. Thus, this approach
makes it possible to fully automate geodetic VLBI schedul-
ing.

In the past, geodetic VLBI scheduling has been a time-
consuming and iterative process. Every schedule was indi-
vidually generated by hand. In case the responsible person
decided that a telescope was not properly included in the
schedule, its weight was increased by some amount. In real-
ity, the sessions within one observation programweremostly
generated using the exact same scheduling parameters, no
matter how the telescope networks looked like or if therewere
changes in the observing mode. In case a station was clearly
not properly included in the session, itsweightwas increased.
For practical reasons, the individual station weights were
often set to integer values, as can be seen in Fig. 13. Here,
the individual station weights of all R1 and R4 sessions in
2019 that are available at the IVS BKG data server1 are visu-
alized.

A station weight of 1.0 is not visualized because this
is the case for the majority of stations. In more than half

1 ftp://ivs.bkg.bund.de/pub/vlbi/ivsdata/aux/2019.
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of the remaining cases, a weight of 2.0 was chosen. For
the rest, the weight was set to either 3.0 or 4.0. Although
increasing the station weight is a good approach to prop-
erly include difficult telescopes into the schedule, using
integer values only for the station weights is a very crude
approach and is also likely human-biased. In contrast, the
ES works fully automatically and is able to fine-tune the
weighting a lot better, is not human-biased and is fully trans-
parent since it selects the stationweights based on large-scale
Monte Carlo simulations and a properly defined session
goal.

It is to note that the proposed ES rarely uses a weight
> 1.5, while in the R1 and R4 sessions, the manually
selected weights are two, three and four. However, the ES
changes the weights of all stations and often reduces the
weight to be < 1.0 to produce a higher relative change in
the individual station weights. Additionally, the R1 and R4
sessions are scheduled by using a different software pack-
age (sked) that implements different scheduling approaches
and algorithms. Thus, it might not be applicable to com-
pare sked-station weights directly with VieSched++-station
weights.

Since June 2020, VieSched++ runs as a daily “cron job”
on a server at BKG in Wettzell.2 Here, for 24-h sessions, the
four weight factors listed in Sect. 2.1.1, the individual station
weights and the number of observations are determined by
the ES for most observing programs. Additionally, for every
observing program, a distinct set of geodetic parameters and
their corresponding weights are defined as the target param-
eters, to reflect the goal of the observing program.

For the intensive sessions, the three parameters listed in
(Sect. 2.1.2) are explored by the ES and the fitness function
is only based on dUT 1 and the number of observations.

After an initial test phase, the resulting schedules have
been proven to be of high quality. Currently, the schedules
for the IVS observing programs INT2, INT3, INT9, AUA,
OHG, T2 and VGOS-B as well as other non-IVS observing
programs such as the southern hemisphere intensive sessions
and intensive sessions between Wettzell, AGGO and partly
O’Higgins, are automatically generated and sent to the station
operators. Additionally, schedules for other IVS observing
programs, such as INT1, R1, R4 and VGOS sessions, are
generated for test purposes only without submitting them to
the IVS schedule distribution server.

5 Conclusion

In this work, we present a new approach to individually
optimize geodetic VLBI schedules using a general approach

2 https://www.bkg.bund.de/DE/Observatorium-Wettzell/IVS-VLBI-
Operations_Center/IVS-VLBI-Operations_Center.html.

that can be fully automated. It is based on the concept of
an evolutionary strategy (ES), meaning that the algorithm
mimics evolutionary processes based on selection, crossover
and mutation to iteratively find optimal scheduling parame-
ters for any given session, based on a well-defined geodetic
goal. Due to the high quality of the resulting schedule, this
approach is currently used for the scheduling of various IVS
observing programs. Besides discussing the ES in detail and
providing good hyperparameters, we highlighted the benefits
of the ES algorithm over a classical multi-scheduling (MS)
approach. This was evaluated based on the OHG, R1 and
T2 observing program. For intensive sessions, the benefit is
less significant since a classical MS approach can also sam-
ple the parameter space sufficiently. For the 24-h sessions,
improvements can be seen throughout most parameters. The
biggest improvement was seen for the OHG sessions, which
are very difficult to schedule. Here, the ES yields on average
10% more observations and an average improvement in sta-
tion coordinate mean formal errors and repeatabilities of 7%
and 8%, respectively, with up to 14% for individual stations.
For the T2 observing program, individual stations such as
O’Higgins experienced an average improvement of 11% for
the mean formal errors and 9% based on the repeatabilities
of the coordinate precision. For the R1 observing program,
the improvement is on average smaller but still up to 8%
for individual stations. Additionally, the number of obser-
vations could be increased by an average of 3%. However,
this improvement is paid by an increased computation cost.
Within this work, we showed that this increased computation
cost isworth the effort.Moreover, the additional computation
cost can be compensated by the fact that the whole algorithm
can run fully automated, as it is demonstrated by the IVS
DACH observations center. Thus, it saves significant work-
load and reduces the human-bias in generating schedules.

It is to note that this work is solely based on simulations.
In reality, other factors, such as inaccurate source structure
models, source flux density values, and nominal station sys-
tem equivalent flux densities (SEFDs) used in scheduling
might lead to a significant mismatch between the simulated
and real precision of geodetic parameters.

Within this work, we investigated an optimization of
scheduling based on weight factors and individual station
weights. Experiments with different types of parameters,
such as the parameters defining the interaction between
observations for the sky-coverage saturation, sourceweights,
or parameters defining minimum/maximum slew
distances/times per station could be investigated in future.
Furthermore, the quality of the source coordinate precision
could be incorporated in the fitness function as well.

The complete automation of VLBI scheduling opens up
the possibility to automate related operational tasks as well.
For example, it would be possible to generate a plan for the
source selection over all geodetic VLBI observations or to
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automate scheduling quality control. A plan for the source
selection would be very beneficial to counteract the current
trend in VLBI observations, where most scans are observing
a very limited amount of sources. It would also be beneficial
for imaging purposes and for astrometry. However, this is left
as a subject for a different study.
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