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Abstract

The Earth's body is enveloped with fluids represented mostly by the atmosphere and oceans,

which force the Earth's rotation vector to alter. On daily and sub-daily time scales, differential

gravitational forces of the Moon and Sun govern the regular Earth rotation variations by raising

ocean tides. A distinct addition and modulation of these ocean tide effects is provided by atmo-

spheric tides, which result from cyclic absorption of insolation at upper air and boundary layer

heating at the Earth's surface. Short period tidal mass variations that are of particular relevance

to Earth rotation are those with Sun-locked diurnal S1 (24 hour) and semidiurnal S2 (12 hour)

periodicities.

Atmospheric tides were discovered first in the variations of the surface pressure field, whose

measurements are ingested into weather models along with a presentation of the S1 and S2 cycles

from remote sensing. The impact of these variations on Earth rotation can be determined from a

geophysical modeling perspective by means of an angular momentum approach. In this thesis, the

Earth's rotation effects related to atmospheric tides are evaluated in a separate approach based

on the Very Long Baseline Interferometry (VLBI) observations. Elucidating the potential reasons

for the well-known discrepancies in Earth rotation between these two approaches formulates the

core argumentation in this thesis.

Overall, atmospheric tide effects in Earth rotation are detected on the expected level in the

analysis of the VLBI observations. The reliability of these signals is confirmed directly through

a comparison with geophysical estimates and indirectly validating the obtained high-frequency

ocean tide terms against the range of reference solutions. For polar motion, previous studies have

documented a significant discrepancy between the geodetic and geophysically derived S1 terms

at the order of 10 µas or large. This difference is mitigated to 5 µas in the present study, yet

this value is above the best threefold formal error level in polar motion (2.5 µas) provided by the

undertaken VLBI analysis.

In a supplementary study Earth rotation tide models were considered in dependence on the

applied corrections to the station VLBI positions due to the loading effects of the fluids as provided

by different geophysical models and vice versa. However in both approaches, the parameter

estimates based on different geophysical models demonstrate statistically insignificant variations

under threefold formal error level.





Contents

1 Introduction 1

1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation for research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Geophysical interactions 5

2.1 Earth Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Conventional parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Tidal potential and ocean tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Analytical expansion of tidal potential . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Harmonics solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Specific harmonics of tidal potential expansion . . . . . . . . . . . . . . . . . . 17

2.2.4 Major ocean tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Atmospheric contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Atmospheric tides as derived from tidal potential . . . . . . . . . . . . . . . . . 20

2.3.2 The thermodynamic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Secondary processes related to atmospheric tides . . . . . . . . . . . . . . . . . 24

3 The VLBI method 25

3.1 Very Long Baseline Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 In comparison with other observing methods . . . . . . . . . . . . . . . . . . . 28

3.2 Applied reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Station positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Light propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 A priori Earth Orientation Parameter model . . . . . . . . . . . . . . . . . . . . 33

4 Analysis of VLBI observations 37

4.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 A common concept of LSA applied in VLBI analysis . . . . . . . . . . . . . . . . . . . . 39

4.3 Single session solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Earth Rotation Parameters time series . . . . . . . . . . . . . . . . . . . . . . . . 46

v



Contents

4.3.2 Study of various geophysical models . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Tidal signals in variations of the station positions . . . . . . . . . . . . . . . . . 61

4.4 Global solution vs. single session solution . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Detection of the atmospheric tides 67

5.1 Method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Earth Rotation Parameter time series analysis . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 The first method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 The reconstruction method of the time series . . . . . . . . . . . . . . . . . . . 74

5.2.3 The stacked time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.4 The validation of the obtained empirical model . . . . . . . . . . . . . . . . . . 76

5.2.5 The S1 tide in Earth Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Station positions time series analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Atmospheric tides in harmonic variations of station positions . . . . . . . . . 85

5.3.2 Ocean tides in harmonic variations of station positions . . . . . . . . . . . . . 89

6 Conclusion 95

6.1 The atmospheric S1 tide in the high-frequency ERP time series . . . . . . . . . . . . . 96

6.2 The diurnal and semidiurnal atmospheric tides in the station position variations . . 97

6.3 Remark on the VLBI method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix 99

A Auxiliary calculations 99

B Auxiliary tables 107

Acronyms 119

Acronyms 121

List of Figures 125

List of Tables 129

Bibliography 133

CV 143

vi



Chapter 1

Introduction

A research in the area of the Earth system is interested in a wide range of processes from the

deep interior of the Earth to the outermost layer of the atmosphere. A unified set of observations

of the entire Earth's behavior is now available and promotes further investigations to explore this

comprehensive interactive system. In geodesy, the most researches are focused on supporting an

accurately determined global reference frame (Plag et al., 2009) on which to base parameters for

the Earth rotation, gravity field and geokinematics considerations. This work ultimately involves

collaboration with climate monitoring, and efforts to analyze and forecast processes in the atmo-

sphere and oceans. Vice versa, studies of the Earth's structure of atmosphere layers and oceans,

benefit from a stable reference frame realization. Specifically, each layer of the Earth system is

presumed to experience loading, with both periodical and irregular variations. An examination of

these signals and other interactions among Earth's layers is integral to the geodetic and geodesy-

related analysis. Nowadays the fundamentals of the Earth System are well known even down to

extraordinarily small scales. Nevertheless, the exploration of the influence of the second, third

and higher order terms refines the system of knowledge to underpin the reliability of previous

investigations (Gross, 2015) with updated arguments. In addition, a cross-validation of results

obtained independently by different approaches provides a step toward understanding changes

in the system.

1.1 Summary

The entire Earth system and dynamics are affected by external forcing of the Sun and Moon.

The result which appears chiefly in the oceans is the well-known effect of tidal variations. The

study of ocean tides is a classic example of a dynamic theory, in which the fundamentals have been

investigated since the XVIII century by Newton (laying the foundations for classical mechanics)

and Euler (calculating the eigenperiods of rigid body rotation). Later, Chandler discovered a

considerable departure from Euler's eigenperiod with a period of 433 days mainly sustained by

both atmosphere and oceanic excitations (Gross, 2015).

In this thesis the focus is on the study of the periodic variations of the atmosphere which
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1.2 Motivation for research

can be seen in the high-frequency Earth's rotation. These effects are forced by regular solar

heating (Chapman & Lindzen, 1970) and commonly known as the diurnal S1 and semidiurnal S2

atmospheric tides. Direct insolation is absorbed in upper layers (Hagan et al., 2003), leading to

vertically propagating waves that are also recognized in the atmospheric surface pressure field.

These atmospheric or ''radiational'' tides in the pressure field are effective in inducing motions in

the oceans, namely the hydrodynamic response to the atmospheric forcing (Ray & Egbert, 2004)

at the same frequencies (S1, S2). The combination of these effects are referred to as atmospheric

tides; the less powerful excitation sources as, e.g., gravitational forcing of the atmospheric mass

can be omitted (Ray & Egbert, 2004).

Analysis of one part of the Earth system cannot be performed in a completely independent

approach. In the study of the atmospheric tides, the other components are required to be ac-

counted for, in particular, the ocean tides occurring at the same frequencies as the atmospheric

tides. One of the main ocean tides is the S2 tide, known as the principal solar semidiurnal tide,

and the one of the smallest ocean tides is the combined S1 tide (Simon et al., 2013). The study of

the atmospheric S2 tide is, thus, corrupted by the significant ocean forcing, while the atmospheric

S1 tide amplitude dominates the small ocean S1 tide; therefore, this thesis mainly deals with the

assessment of the atmospheric S1 tide.

1.2 Motivation for research

This thesis's objective is to determine the atmospheric tides in the variations of the Earth's ro-

tation by means of the geodetic Very Long Baseline Interferometry (VLBI) observations. While this

evaluation remains challenging for geodetic methods, the same effects can be determined using

geophysical modeling (Schindelegger, 2014) on the confident level. For instance, the atmospheric

tides were computed recently (Schindelegger, 2014; Schindelegger et al., 2016, 2017) based on

the angular momentum approach for both, atmosphere and oceans. These geophysical model re-

sults are under the formal error level provided by the analysis in geodesy (Girdiuk et al., 2016b),

giving a rise to a discrepancy of approximately 10 µas at the S1 frequency in the high-frequency

band of polar motion. Moreover, in this band of the Earth's rotation the S1 tide represents one of

the smallest signal amplitudes. In the present thesis, the origins of this discrepancy are explored

based on geodetic VLBI analysis.

The topic of this thesis was designed under project ASPIRE (anagram-abbreviation for

Atmosphere-Induced Short Period variations of Earth Rotation), whose aim was to reconcile geo-

physical excitations with geodetic estimates for the atmospheric tides. Geophysical values were

obtained by Michael Schindelegger based on a combination of meteorological data analysis and

ocean modeling (Schindelegger et al., 2017). To validate these estimates in the second part of

the project, the geodetic account for the atmospheric tides is set up in this thesis. To that end,

an accurate solution for ocean tide effects is required to be deduced consistently using the same

input data as for the atmospheric tides detection. This ocean model should corroborate the pre-
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1. Introduction

vious VLBI solutions (Artz et al., 2011; Böhm et al., 2012, b) or the combined solution with the

Global Positioning System (GPS) observations (Artz et al., 2012). The amplitudes at the frequen-

cies of the atmospheric tides are not adequate in these previous solutions, and thus, the current

assessment is aimed on the contribution to an agreement with geophysical approach.

Besides variations in the Earth's rotation, the atmospheric tides are recognized in the atmo-

spheric loading signals, that is, harmonic station positions variations. The interdependence be-

tween loading and high-frequency Earth's rotation is a supplementary study in this thesis. The

usage of the tidal loading models was shown to produce the positive effect (Wijaya et al., 2013)

for the geodetic parameter (baseline length repeatability) related to the station positions. The

application of a particular model, however, seems to lead to an insignificant changes in terms of

the baseline length repeatability as well as the S1 estimates in the Earth's rotation (Girdiuk et al.,

2016a). In addition to considering pre-calculated values from the atmospheric loading models,

the same effects are directly estimated in the VLBI observations. The obtained results as well as

the high-frequency tide terms are used to assess the current capabilities of the VLBI analysis.

1.3 Thesis outline

The classical approach to describe the Earth's rotation is represented briefly in the Chapter 2.

Since the high-frequency Earth's rotation model related to the external lunar-solar attraction is

not a part of this approach, the corresponding variations are discussed separately.

In Chapter 3 the basic principles of the VLBI method are explained and its advantages are

underlined. The set of reductions is divided into three main groups and follows recommendations

by the International Earth Rotation and Reference Systems Service (IERS) Conventions with a few

extensions to this guidance related to the geophysical model implementation.

The foundation of the VLBI analysis is the data set. The assembled data set is described in

Chapter 4 along with the analysis commonly applied in the processing of the VLBI observations.

Further, the single session solution, which is employed mostly in this thesis, and the global solution

are described. The time series evaluations of the high-frequency Earth Rotation Parameters (ERP)

and station positions in the single session solution are reviewed to reduce most of deficiencies in

the time series for the detection of the atmospheric tides.

Chapter 5 collects the main results in this thesis. The empirical high-frequency tide terms

model is obtained by means of three methods of the time series approach. These results are

validated using the major ocean tides against geodetic solutions and geophysical models. As

regards the S1 tide, the discrepancy with geophysical model estimates is confirmed, but overall

the difference is reduced to agree more favorably with the most recent geophysical assessment

by (Schindelegger et al., 2017).

The supplementary study of the station position variations estimated internally in the VLBI

analysis reveals realistic amplitudes in comparison with values derived from geophysical models.

Here, for the first time, no any constraints or additional assumptions are used to retrieve these
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1.3 Thesis outline

daily and sub-daily signals. However, these achievements encounter the certain restrictions by

the formal error level.

Chapter 6 concludes this thesis with a brief summary on results and the present formal error

level in the VLBI analysis.
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Chapter 2

Geophysical interactions

This chapter reviews accepted formalisms to describe Earth's rotation motion and its perturba-

tion factors (Moritz & Müller, 1987; Gross, 2015) as well as a framework of geodetic application

recommended by the IERS Conventions (Petit & Luzum, 2010).

Geophysical interactions occurring among the layers of the atmosphere, oceans and the Earth

enveloped by these fluids are an important factor influencing the Earth's rotation variations. The

set of parameters – polar motion, Length of Day (LOD), precession and nutation – is known as

Earth Orientation Parameters (EOP). These quantities represent an interest in Earth's rotation

research. On the one hand, their determination has been the subject for a variety of investi-

gations devoted to modeling of geophysical influences (Egbert & Erofeeva, 2002; Ponte et al.,

2002; Schindelegger et al., 2017). On the other hand, the EOP variations can be observed at

high accuracy using modern space-geodetic techniques. In this thesis in particular, an empirical

determination of the EOP is performed based on the analysis of VLBI observations.

At the very highest frequencies, in the sub-daily band, the Earth's rotation is significantly

perturbated by the dynamic ocean tides. A secondary influence at these time scales is due to the

daily solar irradiance referred to as the atmospheric tide. The ocean tides have larger amplitudes

at the diurnal and semidiurnal bands, but owing to non-linear heating processes the atmosphere

contribution prevails over the oceanic one at the particular frequency of the S1 tide.

This thesis focuses on the small diurnal and semidiurnal atmosphere-induced variations, yet

the oceanic contribution is considered to treat the Earth's rotation simultaneously. In this chapter,

the general dynamic concept of the rotating Earth and its excitations are presented, first. Sec-

ondly, the gravitational tidal potential, which provides external torques on the system Earth and

induces ocean tides, is derived. Finally, this gravitational potential theory is utilized to introduce

the atmospheric tides by means of a radiational potential (Munk & Cartwright, 1966) and the

thermodynamic background of the atmospheric tides is summarized briefly.
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2.1 Earth Rotation

2.1 Earth Rotation

The movement of the Earth in a field of an external gravitational attraction ~L can be described

without loss of generality by the fundamental dynamic equation of a rotating solid body:

~L =
d
d t
~H + ~ω× ~H, (2.1)

where the applied reference frame (and thus, the time derivative d
d t ) is fixed to the Earth-

body. This equation is called Liouville's equation in geophysics (Moritz & Müller, 1987; Gross,

2015). In the classical approach (Moritz & Müller, 1987) the geophysical excitation modeling

of Earth's rotation disregards the lunisolar gravitational field ( ~L = 0) which produces torques
~L . In this case, the total angular momentum of the Earth ~H remains constant. The angular

momentum consists of a solid part and that of fluids (the most essential for this study: ocean and

atmosphere). According to the IERS Conventions (Petit & Luzum, 2010) an additional assumption

is introduced to specify the solid Earth as consisting of the crust, mantle and core. As follows,

any changes in angular momentum of the fluids compel to make an alteration to the angular

momentum of the solid Earth. The exchange processes in the angular momentum of the fluids

and solid Earth lead to variations of the Earth rotation. The total vector of the entire system ~H

therefore is tackled into two parts: relative angular momentum ~h is an indicator of the motion

relative to the rotating reference frame and variable inertia tensor ~I is a marker of the mass

re-distribution. This principle can be expressed

~H = ~I ~ω
︸ ︷︷ ︸

mass or matter term

+ ~h
︸ ︷︷ ︸

motion term

= constant, (2.2)

where an angular velocity vector ~ω quantifies a rotation of body-fixed reference frame at-

tached to the Earth body with respect to the inertial (space-fixed) reference frame. This velocity,

thus is instantaneous angular velocity of the Earth, a measure of its rotation, which includes a

constant part Ωmainly along z axis with small departures from uniform rotation mx , my , mz � 1:

~ω= Ω(mx , my , 1+mz). (2.3)

Similar to the Earth's rotation velocity ~ω the inertia tensor ~I is time-variable. The inertia of

the Earth defines the internal mass distribution which is divided into the constant part assigned

6



2. Geophysical interactions

by the diagonal elements and the variable additions to each element:

~I =







A 0 0

0 B 0

0 0 C






+







∆Ix x ∆Ix y ∆Ixz

∆Ix y ∆I y y ∆I yz

∆Ixz ∆I yz ∆Izz






, (2.4)

where A, B and C are the principal moments of inertia of the Earth and meet the conditions

C > B > A. Most of rotation power is carried out by the constant part, so that the Earth motion

can be described by the formalism of the rigid solid body to the first order. The variable part,

thus, causes very small but measurable variations which can be utilized to investigate the internal

structure and processes occurring in the Earth's body (Yoder et al., 1981).

The product of inertia and angular velocity of the Earth represents mass or matter term and

the other component in equation (2.2) presents relative angular momentum and called the motion

term (Schindelegger et al., 2013; Gross, 2015). In accordance with generally accepted principles

(Gross, 2015; Petit & Luzum, 2010), the relative angular momentum is permitted only for core,

ocean, atmosphere and other fluid's motions in the Tisserand mean-mantle frame and canceled

for the crust and mantle motions.

The ultimate solution of equation (2.1) upon linearization within the angular momentum

approach is

1
σ̂0

˙̂m + m̂ = χ̂ −
i
Ω

˙̂χ ,

mz = −χz ,
(2.5)

where σ̂0 is the observed complex frequency of the Chandler wobble. The vector of motion m̂

in equation (2.5) is the combination of two orthogonal components m̂ = mx + imy which depict

the position of the rotation axis of the body-fixed reference frame. The effective angular momen-

tum functions χ̂ and χz convey geophysical excitations and are defined by the mass distribution

and motions terms:

χ̂ = χx + iχy = χp +χw =
1.100Ω∆Î + 1.608ĥ

(C − A′)Ω
, ∆Î =∆Ixz + i∆I yz ,

ĥ = hx + ihy ,

χz = = χz
p +χ

z
w =

0.748IzzΩ+ 0.997hz

ΩCm
,

(2.6)

where the constant A′ characterizes the average equatorial moment of the Earth's inertia ten-

sor and satisfies condition C >> A′ = (A+ B)/2. Derivations as well as numerical quantities of

the utilized parameters, for instance, the Chandler wobble frequency, the principal moments of
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2.1.1 Conventional parametrization

inertia and scaling coefficients in equation (2.6) can be found in work by Gross (2015). Equa-

tion (2.6) is valid for a realistic Earth model which represents an elastic body composed of fluid

core, equilibrium oceans, anelastic mantle and atmosphere (Gross, 2015). For the atmosphere,

the mass and motion terms are related to excitations from pressure (χp) and wind (χw ) which

can be calculated based on the pressure field variations and wind pattern provided by various

numerical weather models and forecasts. The background equations to calculate effective angu-

lar momentum functions are generalized in Appendix A. To adopt this approach for the ocean,

pressure and winds can be substituted by heights and currents to evaluate ocean tidal angular

momentum functions on the stipulation that a homogeneous flow is defined per column for the

still water, where a mass unit is replaced by the mean density of the sea water.

An explicit dependence of the Earth's axial angular velocity upon the axial excitation function

is illustrated in equations (2.5) and (2.6). The observed variations of LOD or changes in Univer-

sal Time (dUT1), thus, can be obtained by the utilization of the effective excitation functions

proposed by Barnes et al. (1983)

χz =
LOD(s)
86400s

+ constant= −
d
d t

dUT1+ constant, (2.7)

so that LOD characterizes departures from the standardized length 86400 s of the instanta-

neous Earth's rotation mz .

2.1.1 Conventional parametrization

While the interpretation of the mz component of Earth rotation is rather straightforward,

treatment of the complex motion m̂ is a more complicated task that demands introducing ad-

ditional definitions. The location of the instantaneous rotational axis m̂ on the Earth surface is

called a rotation pole. In perpendicular plane to the Earth's axis the North pole is the origin

of rectangular coordinate system, where axes are directed to the Greenwich meridian (x) and

90◦ West (y). However, observing systems are incapable to determine directly the motion of the

instantaneous rotating pole. As a consequence, the definition of the Celestial Intermediate Pole

(CIP) is introduced (McCarthy & Capitaine, 2002) by means of measured values of x and y com-

ponents of the CIP motion in a Terrestrial Reference Frame (TRF). Consisting with astrometry's

traditions, this approach separates the Earth's axis motion in the perpendicular plane (x y plane)

into precession-nutation and polar motion, so that the long-term variations observed in a celestial

reference frame correspond to precession and nutation and almost all variations in the terrestrial

reference frame belong to polar motion (except diurnal band with frequencies between -1.5 and

-0.5 Cycle per sidereal day (cpsd) specified in TRF).

From a mathematical point of view, three rotations with corresponding angles are necessary

and sufficient to define a transformation matrix from one reference system to another. This is,

an observer's position given in the terrestrial reference frame ~rt can be converted to the celestial

8



2. Geophysical interactions

reference frame ~rc by means of three angles defined by direction cosines in equation (2.3). For

practical applications, the last resolutions of the International Astronomical Union (IAU) (Mc-

Carthy & Capitaine, 2002) introduce the transformation formalism between the International

Terrestrial Reference System (ITRS) and the Geocentric Celestial Reference Frame (GCRS):

~rc = QRW ~rt , (2.8)

Q = R3(−E) · R2(−d) · R3(E) · R3(s), (2.9)

R = R3(−ERA). (2.10)

W = R3(−s′) · R2(x) · R1(y), (2.11)

where the classical transformations W stands for the transformation of the observer's loca-

tion from the TRF to an intermediate system using the reported pole coordinates of the CIP x

and y . With respect to the kinematical definition of ''non-rotating'' origins, in the terrestrial ref-

erence system the ''Terrestrial Intermediate Origin (TIO) locator s′'' specifies the TIO position on

the equator of the CIP and the ''Celestial Intermediate Origin (CIO) locator s'' provides the CIO

position on the equator of the CIP correspondingly. The next transformation matrix R rotates

the obtained CIP position to account for the spin motion around the CIP axis on the angle ERA

(Earth Rotation Angle) between intermediate celestial and terrestrial reference systems (CIO and

TIO). The last matrix Q sets the previous resultant to the celestial reference frame by rotating for

precession-nutation motion. The motion of the CIP in the GCRS is described by angles E and d

in equation (2.9) used to define the rectangular coordinates of the CIP in the GCRS:











X = sin d cos E,

Y = sin d sin E,

Z = cos d.

(2.12)

and by a rotation from the intermediate reference frame on angle s expressed as a function

of X , Y (Capitaine et al., 2003). The model for precession and nutation utilized in the last IERS

Conventions (Petit & Luzum, 2010) takes into account these effects as provided by Capitaine

et al. (2003), including frame biases. In this theory, however, the Free core nutation (FCN) is not

included and by this reason so-called celestial pole offsets (dX , dY ) are required to be estimated

from observations. Hence, the matrix Q implemented in all reductions uses a model matrix QIAU:

Q = QIAU







1 0 dX

0 1 dY

−dX −dY 1






. (2.13)
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2.1.1 Conventional parametrization

The transformation matrix given in equation (2.8) implies rotation on five angles, because

both locators s′ and s are defined by the polar motion or precession-nutation quantities corre-

spondingly. Thus, five EOP are used to associate any transformation from celestial to terrestrial

reference frame and vice versa. These EOP are two components of polar motion, the parameter

describing spin, LOD or dUT1, and two parameters to depict precession and nutation. Since a

minimal number of transformations between two systems in three-dimensional space is defined

by three rotations, the set of the EOP involves a linear combination between polar motion p and

precession-nutation motion n

p̂ = −ne−iΩt ,

n = X + iY.
(2.14)

The parametrization for combined complex polar motion of the CIP can be expressed by p̂ =

x − i y , so that the analytical solution in form of the rotation Ω between the body-fixed terrestrial

and the intermediate reference frames (CIP) (Gross, 1992) reads:

m̂ = p̂ −
i
Ω

d
d t

p̂. (2.15)

This provides the link between reported vector p̂ in the terrestrial reference and theoretical

quantities m̂. For frequencies, the following relation (Gross, 1992) holds

σcelestial = σterrestrial +Ω. (2.16)

Long-term precession-nutation motions in the celestial reference frame can be found in equa-

tion (2.16) to correspond to the high-frequency variations in the terrestrial reference frame with

frequencies σterrestrial ≈ −Ω. As common, any motion along with the direction of Earth rotation is

referred to as the prograde motion and labeled by positive frequencies. At the negative frequen-

cies semidiurnal retrograde polar motion propagates backwards with respect to the direction of

Earth rotation. Nearly diurnal polar motion exhibits the effect of ocean tides in the diurnal and

semidiurnal bands. These effects were neglected in the previous realization of the intermediate

reference frame known as Celestial Ephemeris Pole. Currently, geodetic observing systems are ap-

proaching to a millimeter level, on which the account for ocean tides is required. By this reason,

the modern conventional CIP also takes into account effects of ocean tides. In the CIP frame-

work precession-nutation comprises any motions of the CIP observed in the celestial reference

frame in range of frequencies between -0.5 and 0.5 cpsd. All remaining frequencies in celestial

reference are ascribed to polar motion. In the terrestrial reference frame, nutation encompasses

frequencies between -1.5 and -0.5 cpsd and all other frequencies in the domain are in polar mo-

10



2. Geophysical interactions

ψ

P

l

L
A T B

Figure 2.1: A schematic plot of mutual position of the Moon (on the left side) and the Earth (on the
right) is shown where the bodies centers are located on the same line and separated by the distance L.
T is the Earth's center, A and B are the diametrically opposite points on the Earth's surface and the line
connected to the Moon's center. At these points red vectors denote accelerations towards to the Moon, in
inverse direction there is the compensated acceleration to the Earth marked by yellow color. Differential
accelerations appear at every point at the Earth body (blue vectors) and supply the theoretical circle (at
the first approach) Earth figure with tidal bulges illustrated by the red dashed line. An arbitrary point P
on the Earth's surface is remote on the distance l from the Moon's center.

tion. Thus, tides in the terrestrial reference frame appear at prograde diurnal frequencies and the

entire semidiurnal band of polar motion. The retrograde diurnal band is cleansed from any polar

motion signals, which are nutations and studied in the celestial reference frame.

2.2 Tidal potential and ocean tides

The periodic effect of rising and descent of water level and its source, the gravitational at-

traction by the Moon, were known for many centuries. But the fact of existing tides twice per

day was discovered by Newton (Feynman et al., 1963) who gave the correct interpretation. To

illustrate the tide generation mechanism, the two bodies case suffices as a first approach. Accord-

ing to Newton's law of universal gravitation the Earth experiences the attraction decreasing with

distance from the Moon as the inverse squared law. The Earth is supposed to be different from the

point mass body, namely an extended body is considered. In the result of the Earth's extent the

differential accelerations appear in diametrically opposite points A and B on the Earth surface. At

these points the following relationship between accelerations ~aA and ~aB holds:

~aB < ~aT < ~aA, (2.17)

where ~aT is applied to the Earth's center. In Figure 2.1 the red vectors denote accelerations

induced in the points A, B and T towards to the Moon placed on the line which ties the body's

centers. The Earth's surface attracted maximally on the point A depicts a "tide is under the Moon"
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2.2 Tidal potential and ocean tides
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Figure 2.2: A signature of a tidal wave in polar motion over 24 hours.

(see Figure 2.1) while the gravitational field on the point B has minimal effect on the Earth's

surface. When these accelerations are considered with respect to the center of the Earth, point B

experiences the differential acceleration similar to point A:

~wA− ~wT = GM
� 1
(L − R⊕)2

−
1
L2

�

≈ GM
2R⊕

L3

~L
L

,

~wB − ~wT = GM
� 1
(L + R⊕)2

−
1
L2

�

≈ GM
2R⊕

L3

~L
L

,

(2.18)

where the vector ~L is the distance between centers of the Earth and Moon, R⊕ is a radius of

the Earth.

The first order terms in equation (2.18) reveal the same accelerations of A and B where

collinear vectors pointed in opposite directions shown in Figure 2.1 in blue. An arbitrary point on

the Earth's surface between marginal locations in point A and B experiences acceleration pointed

towards to A or B. The directions of resulting vectors depend on the hemisphere with respect

to the rotational axis in which this arbitrary point is located. At the poles, the Earth's surface

is affected by acceleration half as small as differential acceleration on the straight line between

body's centers: GM
R⊕

L3
~L
L . The surface, which is subject to these differential or, also called, tidal

accelerations, is shown by red dashed line in Figure 2.1 and defines the equilibrium. The equi-

librium surface demonstrates the balance of the tidal forces with hydrostatic pressure. Moreover,

tidal amplitudes and phases are calculated relative to this surface.

As the result of Earth's rotation, the gravitational attraction of the Moon is compensated by

inertia forces. The corresponding tidal accelerations can be demonstrated by the action of the fluid

Earth's bulge. The bulge appears twice per day in every location on the surface due to Earth's

rotation and moves across the planet with period of the Moon's revolutions. The amplitude of the

one bulge part can be seen large than the other. This fact can be confirmed by extracting higher

order terms in the equation (2.18), so that in any area during a day one of the tidal heights

12



2. Geophysical interactions

rises above the other. This effect is illustrated in Figure 2.2 in terms of polar motion wobble.

Two increases of the amplitude wave during a day display the presence of the supplemental two

bulges on the opposite sides of the Earth. And an increment of one of them characterizes diurnal

variations as a smaller addition to the semidiurnal effects.

2.2.1 Analytical expansion of tidal potential

The motion in the Earth-Moon system occurs around the common center of the mass, which

is located within the Earth's body. This position of the center of mass indicates the considerably

smaller Moon's mass and potential V than the Earth gravitational field. The major influence of

the Moon's potential V is the differential accelerations produced by the tidal force at the arbitrary

point on Earth's surface P, removed from the Moon's center at distance l shown in Figure 2.1.

In accordance with Newton's law, the gravitational field of the force ~F is described by a scalar

function (Moritz & Müller, 1987) of the spherically symmetric potential field V generated by mass

M

~F = −∇V ⇐⇒ V =
GM

l
, (2.19)

where G is the gravitational constant. The distance 1/l can be expressed by Legendre poly-

nomials Pn of degree n (see Appendix A for details) in the theoretically infinite sum:

1
l
=

1
Ç

R2
⊕ + L2 − 2 R⊕ L cosψ

=
1
L

∞
∑

n=0

�R⊕

L

�

n

Pn(cosψ), (2.20)

where ψ is the central angle between the arbitrary point P at the Earth surface on the radius

R⊕ and the Moon.

The nabla operator ∇ defined as
�

∂
∂ x , ∂∂ y , ∂∂ z

�

in the Cartesian coordinate system (x , y, z) of

the distance vector ~L = (Lx , L y , L y) is applied to determine accelerations:

−∇V = +



































∇
GM
L2

~L
L
== ~wT

∇
2GM

L3

~R⊕~L

L
== ~wP

rel

∇
GM

L

∞
∑

n=2

�R⊕

L

�

n

Pn(cosψ)

(2.21)

The first term represents the acceleration force exerted by the Moon, for the particular simple

case in which the potential field is induced by a point mass on the distance L. This gravitational

attraction forced by the Moon at the center of the Earth balances the centrifugal force applied to
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2.2.1 Analytical expansion of tidal potential

the Moon to keep revolving around the Earth. The second term comprises the nearly equal terms

obtained in equations (2.18) coerced by tide generating forces. These forces shape the Earth with

approximatively the same two tidal bulges. Thus, the first two terms are compensated.

The next terms, harmonics n= 2 and higher in equation (2.21), caused by differential accel-

eration are referred to as 'tidal potential' or Tide Generating Potential (TGP) (Dehant & Mathews,

2015)

VTGP =
GM

L

∞
∑

n=2

�R⊕

L

�

n

Pn(cosψ), (2.22)

The only term of the TGP which is worth to be considered further is V2, because it comprises

98% of the VTGP (Torge & Müller, 2012). The central angle ψ can be defined (Moritz & Müller,

1987) also as the zenith distance of the Moon in the equatorial coordinate system. The spherical

triangle encompasses positions of the North Pole, direction on Zenith in the location of the ob-

server (φ,λ′) and the Moon (δ,λ), so that the angle ψ can be expressed by the cosine rule into

the longitude difference (λ−λ′)

cosψ= sinφ sinδ+ cosφ cosδ cos(λ−λ′). (2.23)

These mutual position angles are used in the substitution of the second degree TGP V2 in

equation (2.22), so that the final result contains the sum of following terms (Sidorenkov, 2009;

Torge & Müller, 2012)

V2 = D
�

L0
L

�3 �
3(sin2φ − 1

3) (sin
2δ− 1

3) +

+ sin 2φ sin2δ cos(λ−λ′)+
+ cos2φ cos2δ cos(2(λ−λ′))

�

,

(2.24)

where the Doodson constant D = 3GM
4

R2
⊕

L3
0

comprises time-independent coefficients G, M , R⊕

and L0 (lunar major semi-axis of revolution). Terms in equation (2.24) reveal periodic solution

of tidal potential and distribution of these solutions on the sphere. The distribution serves to

describe the Earth's surface differential perturbations by lunar attraction. Corresponding terms

in equation (2.24) include the latitude-dependent (sin2φ− 1
3) factor which divides the sphere into

loci where the potential surface takes positive values in the range −35◦ ¶ φ ¶ 35◦ and negative

everywhere else. The solutions, which meet this condition, belong to zonal spherical functions

(zonal harmonics). Adjacent terms contain latitude as function sin2φ and sin2φ called tesseral

and sectoral in accordance with loci of solutions on the sphere (see Appendix A for details). The

other parameters L0
L , δ and (λ − λ′) in equation (2.24) specify the periodic solutions defined

14



2. Geophysical interactions

Argument Period defined as 1st term Caused by

s Mean lunar tropical month constant Declinational change

(s− p) Lunar anomalistic month
�

L0
L

�

Orbit ellipticity
(s− p)− 2(h− p) Lunar evection period combination Perigee revolution – evection
(s− h) Lunar synodic month combination Eccentricity revolution

– variation

Table 2.1: Arguments of main harmonics functions, their periods and sources (Simon et al., 2013).

by the continuous change of the Moon position with respect to the observer. The expansion of

these parameters in time series of harmonic functions exposes diurnal (λ− λ′) and semidiurnal

(2(λ− λ′)) periodicities as well as long-term variations depending on δ. In celestial mechanics

these periodical solutions of the orbital motion are the main problem consisting of the evection

equation solving (Simon et al., 2013). The evection equation serves to define one of the milestones

of the celestial mechanics theory – the lunar perigee motion induced by solar attraction (Beutler

et al., 2006). Although the gravitational field of the Sun is the strongest in the solar system, tidal

solar acceleration is approximately twice as small on the Earth as lunar attraction. By this reason

the evection is an even smaller long-term deviation with frequency p (revolution mean perigee

of the Moon, see the Table 2.2) which affects L0
L and lunar longitude λl , so that solar TGP is

considered simultaneously with lunar tidal forcing (Simon et al., 2013).

2.2.2 Harmonics solutions

A periodic formulation of tidal potential can be obtained by considering the components men-

tioned above ( L0
L , δ and λ−λ′). During the lunar revolution the equatorial coordinates (δ,λ−λ′)

vary with time as the functions of hour angle τ= λ−λ′, and, additionally, the distance L = L(t)

changes due to eccentricity of the orbit. The first term in equation (2.24) represents time-variable

multiplier which contains the fortnightly (M f ) long-term variations due to the declination δ

changing twice per mean lunar tropical month:

sin2δ−
1
3
=

1
3
− cos2δ, (2.25)

where lunar declination is circumscribed in the range of |δ|< 28◦30′. Another source of long-

term variations is the distance perturbations L0
L (Sidorenkov, 2009; Simon et al., 2013), whose

first harmonic corresponds to lunar anomalistic month assigned by argument (s−p). The anoma-

listic period is the time between double transitions of the pericenter. The other main periodicities

are collected in the Table 2.1 (Simon et al., 2013), where fundamental arguments are described

in Table 2.2.

A uniform circle orbital motion with period of one mean lunar tropical month is the first

order of the lunar orbital motion. The second effect is provided by adding the first term of the
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2.2.2 Harmonics solutions

Argument Description Period

s Mean lunar longitude Tropic month 27.32 d
p Mean lunar longitude of perigee Lunar precession 8.85 y
l = (s− p) Mean lunar anomaly Anomalistic month 27.55 d
N Mean lunar longitude of the ascending node 18.61 y
F = s− N Mean lunar elongation counted off from Draconitic month 27.21 d

the ascending node
h Mean solar longitude Tropic year 365.24 d
D = s− h Mean lunar elongation counted off from Synodic month 29.53 d

the Sun
ps Mean longitude of the perihelion of the Earth 20 940 y
l ′ = h− ps Mean solar anomaly Anomalistic year 365.26 d

Table 2.2: Fundamental arguments (Simon et al., 2013).

distance change L0
L to describe the elliptic motion with a period of an anomalistic month. The next

effect provides periodic solution based on mutual positions the Sun and Moon. The gravitational

attraction prevails in conjunctions with the Sun than in quadratures, which induces the period of

lunar synodic month (Table 2.1). These periodic solutions (Simon et al., 2013), lunar evection and

synodic month, are somewhat more complicated since these non-linear motions are combined.

To summarize these terms, the expansion for the distance ratio and longitude can be composed

as (Simon et al., 2013):

�

L0
L

�3
= 1 +Cel l cos(s− p) + Cevec cos(s− 2h+ p) + Cvar cos(2s− 2h),

λl = ṡ t +C ′el l sin(s− p) + C ′evec sin(s− 2h+ p) + C ′var cos(2s− 2h),
(2.26)

where appropriate coefficients account for effects of ellipticity Cel l , C ′el l , evection Cevec , C ′evec

and variation of lunar orbit Cvar , C ′var . The connection of these effects with the same variations

defined in equation (2.24) for TGP can be expressed by the next link between longitude and

declination of the Moon (Simon et al., 2013):

sinλl sinε� = sinδ =⇒

¨

sin2δ ≈ 0+ 2 sinε sin s

cos2δ ≈ 1+ n cos 2s,
(2.27)

so that their corresponding harmonics functions are listed in the Table 2.3. The system of

referring to harmonics functions was initiated by Sir William Thomson (Lord Kelvin) in 1882,

for instance M2 and S2 or already mentioned above M f , and extended by Darwin (1898) in an

ad hoc manner later. Currently, numerous side lobes are assigned with arbitrary letter and hold

the subscript of species-number in accordance with periodicity, i.e., diurnal (1), semidiurnal (2),

terdiurnal (3), quaterdiurnal (4).

The analytical expression for the decomposition of lunisolar tidal potential in equation (2.24)
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2. Geophysical interactions

Argument Tide Definition

Lunar diurnal tides
τ No principal lunar wave in TGP
(τ+ s) MK1 Lunar declinational
(τ− s) O1 Principal lunar declinational
(τ− s)− (s− p) Q1 Large lunar elliptic, side of O1
(τ− s) + (s− p) M1 == ε(O1) Small lunar elliptic, side of O1
(τ+ s)− (s− p) M1 == ε(MK1) Small lunar elliptic, side of MK1
(τ+ s) + (s− p) J1 Lunar elliptic, side of MK1
Lunar semidiurnal tides

2τ M2 Principal lunar
2τ− (s− p) N2 Principal (large) lunar elliptic
2τ+ (s− p) L2 Small lunar elliptic
2(τ+ s) MK2 Lunar declinational
2τ− (s− 2h+ p) ν2 Lunar large evectional
2τ+ (s− 2h+ p) λ2 Lunar small evectional
2τ− 2(s− h) µ2 Lunar variational

Table 2.3: Arguments and periods of main harmonics functions caused by Moon tidal generating potential.

into theoretically infinite harmonic functions depended on fundamental arguments listed in Ta-

ble 2.2 are formulated by Moritz & Müller (1987)

VTGP =
∞
∑

n=2

n
∑

k=0

Pk
n (cosφ)
∑

j

Cnmj cos[ωnmj t + βnmj +m(λ−λ′) + (n−m)
π

2
], (2.28)

where Cnmj are appropriate coefficients and harmonic functions are generalized by a simple

formula: C cos(ωt−β) = Acosωt+B sinωt, where phase lag β = tan−1( B
A). The term (n−m)π2

is added for phase shift to provide sinus or cosine parametrization. Frequency of variation ωnmj

is a linear combination of time-variable fundamental arguments, namely s(t), h(t), p(t), N(t),

and ps(t) provided in Table 2.2. Accurate calculation formulas for evaluation of these arguments

are recommended by the IERS Conventions (Petit & Luzum, 2010) and given in Appendix A.

2.2.3 Specific harmonics of tidal potential expansion

The harmonic functions decomposition utilizes amplitude modulation (Roder, 1931) of a car-

rier frequency ωc and a lower modulation frequency ωm:

ac(1+ am/ac cosωm t) cosωc t = (2.29)

ac cosωc t +
am

2
cos(ωc +ωm)t +

am

2
cos(ωc −ωm)t,

where ac and am are amplitudes of the carrier and modulation waves. Equation (2.29) illus-
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2.2.3 Specific harmonics of tidal potential expansion

trates that any decomposition provides three harmonic functions: the principle wave is dependent

on carrier frequency and two functions represent side bands separated by modulation frequency

ωm relative to ωc . In absence of the modulation frequency ωm, the carrier frequency ωc exem-

plifies a single harmonic function. In this case, the lunar revolution motion will be a uniform

circular motion of the zero-inclination orbit. The presence of modulation frequency ωm 6= 0 is

evidence of non-uniform motion as far as variations are conditioned by distance and declination

change. In the tidal potential this wave is called the principal tide (Simon et al., 2013), namely

the lunar M2 (or solar S2), the argument for which can be seen in the Table 2.3.

The decomposition of the tidal potential contains the principal lunar M2 tide supplied with

elliptic side lobes N2 and L2 due to distance variations. N2 is larger than L2 and called the principal

or large lunar elliptical and small lunar elliptic correspondingly (Simon et al., 2013). In the

diurnal band halving M2 the carrier is absent and, by this reason, O1 is defined as the principal

lunar declinational tide and MK1 is another side lobe (Simon et al., 2013). Also, large lunar elliptic

wave Q1 is the side lobe of O1. The other lunar elliptic wave J1 is smaller because it is the side of
MK1. Even smaller variations belong to evectional and variational tides (Sidorenkov, 2009): ν2,

λ2 and µ2 .

The decomposition (2.29) is fruitful in generating harmonic functions. One of resultants of

this approach is the existence of several harmonics of nearly equal arguments. These harmonics

can be combined, since the period and trigonometric arguments are common. For instance, MK1

carrier and solar harmonic SK1 are combined wave of the lunisolar K1 tide. These waves are

indistinguishable due to propagation with the same angular velocity τ+ s = t + h. In addition,

a similar combination is spotted in the semidiurnal band, where SK2 and MK2 are an inseparable

lunisolar wave K2 (Sidorenkov, 2009).

The combined tides are able to indicate processes of physical origin which derive from tidal

potential indirectly. In the diurnal band there is no principal solar or lunar harmonic wave with

period equal exactly to 1 cycle per solar day (Simon et al., 2013), and so the observed signal is

related to the atmospheric origin. The closest appropriate gravitational S1 line is a product of two

side bands of the solar tidal potential expansion (Sidorenkov, 2009):

S1

¨

ε(P1) : (t − h) + (h− ps)

ε(sK1) : (t + h)− (h− ps)
(2.30)

These waves are separated by the long-term argument ps with period of variation 20 940 y.

This long-term motion characterizes the revolution of the Earth's perihelion, which can be omitted

in a first-order approach, but modern tidal tables include both lobes (Petit & Luzum, 2010). As

a result, the definition of S1 exemplifies a combined tide of two lobes of non-principal carriers,

and thus the contribution of these harmonic is small. Amplitude oscillations driven by TGP are

widely referred to as gravitational tides. This duality (Ray & Egbert, 2004) leads to a common

confusion resolved partially by nomenclature: radiational S1 tide is a combined tide of frequency
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2. Geophysical interactions

15◦/h and gravitational tide S1 is the largest wave in equation (2.30) – ε(sK1).

2.2.4 Major ocean tides

The fundamentals of tidal potential imply oceans to be in equilibrium. The equilibrium theory

considers tidal forcing compensated with the sea level surface elevation for a hypothetical case in

which the Earth is covered entirely by oceans which response instantaneously. Tidal heights over

the Earth's surface can be obtained on the basis of this equilibrium assumption (Pugh, 1987)

ζE =
VTGP

g
(2.31)

driven explicitly by TGP of the Sun and Moon. The equilibrium tide is the second degree

spherical harmonic, thus in the realistic case when the Earth responses as elastic body the corre-

sponding amplitudes are modified by the factor of (1+k2-h2). The elastic constants k2 and h2 are

known as the body tide Love numbers of the second degree and liable for the mass redistribution

of the gravitational potential and surface distortions (Pugh, 1987). The body tide Love num-

bers, however, take different values for the diurnal and semidiurnal bands due to FCN resonance

(Sasao & Wahr, 1981), so that equilibrium tidal amplitudes in accordance with equation (2.24)

and (2.28) are divided into a long-term (l), diurnal (d) and semidiurnal (s) periodicities:

ζEl
= Cl3(sin

2ϕ −
1
3
) ζEd

= Cd(sin2ϕ) ζEs
= Cs(cos2ϕ), (2.32)

where Cl , Cd and Cs are appropriate coefficients for each set where Love numbers are already

included and can be found, e.g. in the work by Arbic et al. (2004). However, in general a tide's

propagation over the real globe is different from the equilibrium case due to existence of land

surface and ocean bottom topography, currents and ocean bottom friction, as follows Coriolis

forces and dissipation processes take place as well.

The set of the largest signals specified in equation (2.32) includes usually three long-term

tides and four diurnal and four semidiurnal dominant harmonics. The long-term variations are

lunar fortnightly M f , lunar monthly Mm and solar semiannual constituent SSa. Diurnal lunar O1

and Q1, solar P1 and lunisolar K1 and semidiurnal lunar M2 and N2, solar S2 and lunisolar K2 are

called eight major tides. The principal solar declinational tide P1 is derived from solar potential

by analogy to O1. The main power of lunisolar tides in the diurnal band is provided by the K1

tide. The principal lunar M2 tide is the greatest wave in the considered high-frequency bands.

Next sizable amplitude in the semidiurnal band originate from the principal solar S2 tide, which

is larger than the N2 tide and the lunisolar K2 tide.
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2.3 Atmospheric contribution

2.3 Atmospheric contribution

Effects of smaller order than the gravitationally induced ocean tides belong to atmospheric

variations. The oscillations of the atmosphere are forced by daily insolation and classified as

radiational tide following by Munk & Cartwright (1966). The principal excitation mechanism is

non-gravitational, which is a distinctive property of atmospheric tides in comparison with ocean

tides. This mechanism can be specified by the dependence on solar radiation R� expressed by a

plain statement:

R�∝
~R�

R�
cosψ, where −

π

2
¶ψ¶

π

2
– day,

R� = 0, – night,

(2.33)

so that the vector R� is directed to the Sun. This step function approximates the main pattern

(Munk & Cartwright, 1966) of the atmospheric S1 tide, occurring once per solar day. Realistic

variations in the Earth's rotation variations can be shown by describing the so-called radiational

potential. A different thermodynamic approach is developed in the atmospheric science for the

weather modeling. Utilizing this approach the tidal signals in atmospheric pressure fields can be

calculated to represent the crust deformation forced by the atmosphere. Besides, this atmospheric

loading induces a hydrodynamic ocean response, which is the secondary order effect related to

the atmospheric contribution. Overall, these models are practical for any geodetic analysis.

2.3.1 Atmospheric tides as derived from tidal potential

By analogy with the gravitational potential expansion, the function R� in equation (2.33)

can be substituted by Legendre polynomials and decomposed by into the harmonics functions

(Munk & Cartwright, 1966). Consequently, the major atmospheric tidal admittance relates to

arguments of the S1, seasonal annual Sa, K1 and P1 tides. The radiational S1 tide is the pivotal

wave in the diurnal band corresponding to the 1st degree Legendre polynomial, and the K1 and

P1 tides produce significantly smaller variations (Ray & Egbert, 2004). A determination of the

radiational S1 tide is supported by the absence of strong signal in the tide generating potential. In

view of the fact that the K1 and P1 tides are the main ocean tides, an analysis of their small radia-

tional components is corrupt by the gravitational parts (Ray & Egbert, 2004). The second degree

harmonics are represented by the same frequencies as tide generating potential, i.e., semidiurnal

waves, where the radiational S2 tide is smaller than the major ocean S2 tide (Arbic, 2005).

2.3.2 The thermodynamic approach

Effects of atmospheric tides were determined (Hagan et al., 2003), first of all, in pressure field

variations. Following thermodynamic laws, temperature and density variations contain these sig-
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2. Geophysical interactions

nals as well as the wind patterns and geopotential heights. Currently, the radiational atmospheric

tides are explained primarily by the water-vapor and ozone radiational absorption (Ray & Ponte,

2003), which induces atmospheric pressure oscillations through the upper-atmosphere heating.

Atmospheric tides are divided into migrating and non-migrating tides. Both oscillations pos-

sess the same periods but propagate in opposite directions. This fact can be illustrated by a general

expression:

Acos(Nωωt − NAλ−ϕ) (2.34)

where A is the variation amplitude, ω= (2π/24)h−1 is the wave frequency, positive Nω num-

ber denotes nth harmonic frequency, and λ is longitude, NA is the wave number, which specifies

the number of peaks over the same latitude. Positive values of NA indicate eastward tidal propaga-

tion and negative values reveal westward movement. Migrating solar tides are defined as waves

for which NA = −Nω, thus for diurnal waves NA = −1 and Nω = 1 and for semidiurnal NA = −2

and Nω = 2. These waves propagate westward and vary equally along the same meridian. Thus,

the migrating solar tide is Sun-synchronized and the rest of the waves with the same period are

nonmigrating tides.

Both migrating and nonmigrating waves relate to the vertical component of the tide. The

absorption processes of radiation, which run equally for all latitudes along the same meridian,

produce migrating tides. The solar radiation penetrates all layers, so that these variations can

be observed at any height. In particular, some layers are important to mention: at 150 km level

the layer of atomic oxygen absorbs extreme ultraviolet; closer to the ground, at the altitudes of

100-150 km, molecular oxygen absorbs far-ultraviolet; the next barrier (30-70 km) of ozone layer

absorbs the ultra-violet radiation and the rest (infrared radiation) is absorbed by water vapor in

the lowest atmosphere. The diurnal oscillations of migrating tides initialized in the troposphere

grow with altitude with respect to the conservation law because of the matter density decrease.

The migrating semidiurnal tides have their primary source higher than diurnal, but often occur

with large amplitude owing to favorable vertical propagation characteristics (Dai & Wang, 1999;

Hagan & Forbes, 2002). The nonmigrating tides show a different behavior over the same merid-

ian because of their origin in longitude-dependent factors such as topography, land-sea contrast

and zonal variations. The practical distinction between these types of waves is complicated and

requires a reasonable number of measurements along the same longitude as well as spatial distri-

bution of ground-based techniques, for which upper layers are not attainable. Altitude data are,

however, available and obtained usually from low orbit satellites, for instance, the Upper Atmo-

sphere Research Satellite at the 585 km orbit (The National Aeronautics and Space Administration

(NASA) project science.nasa.gov/missions/uars/).

A model of atmospheric tides observed in the surface pressure field variations is required for

the geodetic ground-based systems. These variations can be obtained from the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF) data set (Ray & Ponte, 2003), for example.
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Figure 2.3: Amplitudes of the atmospheric loading S1 tide are provided by Vienna University of Technology
(TU Wien). The corrections are shown in cm.
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Figure 2.4: Amplitudes of the load S1 tide are provided by Finite Element Solution (FES)2014b. The
corrections are shown in cm.
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2.3.3 Secondary processes related to atmospheric tides

The commonly applied approach to process this data (Ponte & Ray, 2002) was used to produce

the TU Wien atmospheric loading model (Wijaya et al., 2013). The corresponding atmospheric

loading amplitudes for S1 demonstrate (Figure 2.3) typical corrections. This model can be imple-

mented in the geodetic analysis directly, because the load tide represents the crust deformation

(see Appendix A). Also, the angular momentum approach utilizes the surface pressure variations

to evaluate Earth Rotation change (Gross, 2015). Because of considerable amount of the globally

distributed pressure field measurements, angular momentum approach provides currently more

accurate the Earth rotation tide model than geodetic observations. Thus, these geophysical esti-

mates serve as a reference to the atmospheric tide terms determined in this thesis by means of

VLBI observations.

2.3.3 Secondary processes related to atmospheric tides

Based on the work by Ray & Ponte (2003), where the diurnal pressure pattern is clearly

illustrated, Ray & Egbert (2004) discuss the excitation mechanism for the S1 variations in the

ocean. It is concluded that the S1 atmospheric tide excites the hydrodynamic response. The

achievements of this work are partially confirmed by the research of Dobslaw & Thomas (2005)

utilizing a more complicated 3D ocean model used for processing of Gravity Recovery and Climate

Experiment (GRACE) data.

This hydrodynamic ocean response to the atmospheric forcing at the major diurnal frequency

is assumed to induce sea level anomalies of about 1 cm. In the modern ocean model FES2014b

(Lyard et al., 2006) the so-called oceanic S1 tide (Figure 2.4) is given in form of the crust defor-

mations (see Appendix A). These signals hardly attain a couple of millimetres (Figure 2.4).

Besides radiational effects, the gravitational pull of the atmospheric masses due to the Sun

and Moon also excites atmospheric tides (Hagan et al., 2003). Specifically, the lunar atmospheric

tides present about 5-10 % of the atmospheric tidal impact. These significantly smaller effects can

be detected in the pressure field variations (Hagan et al., 2003), and their amplitude estimates

were evaluated recently in the preliminary results of the GRACE product (Dobslaw et al., 2017).

However, on the millimetre accuracy level of VLBI cannot be measured and, thus it is not supposed

to affect the obtained results.
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Chapter 3

The VLBI method

Nowadays, Very Long Baseline Interferometry (VLBI) is one of the widely used measurement

methods in space geodesy. With the VLBI method, distant radio sources are observed, giving a

valuable advantage among other techniques. That is a possibility to relate the Celestial Reference

System (CRS), thus the entire transformation between celestial and terrestrial reference systems

is employed in VLBI observations. The Earth Orientation Parameters are quantities to define this

transformation. Since the Celestial Reference Frame (CRF) is fixed to the sources, which are

considered as standard lighters, all deviations of the real Earth are divided into the Earth rotation

variations, station position deformations and light propagation path through the atmosphere.

This chapter presents a general description on the VLBI method and data processing recom-

mended by the IERS Conventions. In particular, the minimal set of models required for the VLBI

analysis is reviewed and an extension with regard to the geophysical models is discussed.

3.1 Very Long Baseline Interferometry

The Very Long Baseline Interferometry (VLBI) network embraces scores of radio antennas

spread around the world. The primary idea of the VLBI method is to make an interferometer

from at least two radio antennas separated by a distance of thousands kilometres, which observe

the same radio source simultaneously. This distance is a receiver's base, which, in the application

to VLBI, is called a baseline ~b shown in Figure 3.1, and, in general, is an analogue of a single

dish aperture's size. By changing the aperture's size by a thousand times from a single dish to a

baseline, VLBI achieves unprecedented resolving power by accumulating synchronized data from

remote antennas while capabilities of each of the single dish remain unchanged. The angular

resolution characterizes this ability to separate details of the objects on the celestial sphere. The

longer the length of the baseline can be reached between two antennas, the better angular res-

olution α can be obtained. Because the angular resolution α is defined by the function of the

baseline length |~b| for the interferometer which receives a radiation of a wavelength λ:

α∝ λ/|~b|, (3.1)
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3.1 Very Long Baseline Interferometry

VLBI network

~b

Source emission front

Source

Figure 3.1: An illustration of the VLBI principle.

the observations on the longest baselines are benefited for the VLBI accuracy. For a single ob-

servation this resolution can achieve approximately 1 mas with the wavelength approximately

3.5 cm for the longest singular baseline length of about 12 000 kilometers. Because a regular

VLBI network, on average, consists of 6-9 antennas which compose 15-36 baselines growing with

a binomial law dependence, a post-processing analysis of this single routine session might al-

low the achievement of the angular resolution α about 0.1 mas. Further post-processing analysis

methods can enhance this angular resolution even more by considerable amount of the long base-

lines. Additionally, a certain decrease of the signal accumulation time (that time during which

one source is observed simultaneously on network) permits to collect a large number of obser-

vations what improves a statistical assessment (formal error level given by VLBI analysis). This

strategy is made available, first, by observing reasonably strong sources and, second, by upgrad-

ing the equipment on the stations and building new antennas. However, a multi-baseline VLBI is

depended highly on the equipment of each antenna, so that the least sensitive receiver will define

most of the accumulation time of the whole network.

Concurrent observations on the multiple baselines can determine three ERP independently

(Moritz & Müller, 1987), while observations on one baseline can provide only two of these pa-

rameters. The ERP set is situated in the plane perpendicular to the baseline, so that baselines

spread between North and South are sensitive more to the polar motion and East-West baselines

couple to dUT1. At practice the parameter of network geometry is found convenient to associate

baselines with Earth Orientation Parameters (EOP). In this regard EOP estimates from regional

networks, which are composed on comparatively short baselines, were shown to be less accurate

(Malkin, 2009) due to insufficient network geometry (Dermanis & Mueller, 1978). This problem

can not be resolved with increasing of observation number, the latter, however, can improve a

statistical assessment of coordinates per station and source.

The other factor defining the angular resolution α included in equation (3.1) is the wave-
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3. The VLBI method

length λ. The VLBI method is designed to observe in two well-separated bands, X of 3.5 cm and

S of 13.5 cm. The data obtained in the shorter X band are processed in the further analysis which

gives about 4 times better resolution than the S band (Sovers et al., 1998). The observations in

S band are conducted only for reductions of the ionosphere, which is the upper layer of the at-

mosphere consisting of free electrons and ions dispersing the electromagnetic wave propagation,

what affects all geodetic techniques (Alizadeh et al., 2013).

The VLBI method operates in several channels of each of X and S bands, which, first of all,

get correlated to measure rough signals, and, then, the band-width synthesis is applied using

fringe fitting to determine accurate group delays, phases and phase rates for each channel. The

term ' group' marks this fact that each band is divided into several channels, where the standard

mode implies this separation for the X band in 8 channels and the S band in 6 channels. All these

channels include ionosphere delays for two distinct bands, X and S, used to calculate group delay

differences between these bands in order to "calibrate" ("correct") the group delays. The mathe-

matical approach to correct for the ionospheric delay is used as described in the IERS Conventions

(Petit & Luzum, 2010) in more details.

The VLBI method was designed to achieve the unprecedented angular resolution amongst

other observing systems. The celestial reference objects observed by VLBI method are supposed

to be point-like bodies even using high angular resolution. These astronomical objects are radio

sources at considerable distances of several billion light years which emit strong electromagnetic

signals (as a rule) and are called quasi-stellar objects of continuous radiation, or QSO, or quasars

(Schmidt, 1963). Quasars are known as active galactic nuclei because of intense radio emission.

Given the combination of physical properties, powerful luminosity and the distance, quasars are

near-perfect markers on the sphere; thus they can provide a quasi-inertial reference frame, which

is in high demand in geodesy. As a deterrent, the source structure was detected for a majority of

quasars and for some of them the images were created (Charlot, 1990). The number of quasars

is uncountable and observations for a single image building require substantial effort. The spatial

and time variability of quasars contribute to error propagation (Charlot, 1990). Overall, quasars

are in high demand for establishing a celestial reference frame (Fey et al., 2015) regardless to

the recognized deficiencies, because only these objects can provide access to the CRS with the

necessary accuracy as long as there are no better standard lighters yet discovered.

One of the main advantage of using quasars is remoteness used to assume that the wave front

from the source is parallel (Figure 3.1), where the radio source emission center is in direction of

the vector ~s (Sovers et al., 1998). In general, the observations of the sources are the time readings,

which are the main input parameter for the post-processing analysis and used to calculate group

delay. Literally, the term ' delay' signifies that parallel signals from the quasars are not detected

at the exactly same time (Figure 3.2), but in the time t1 at one site and t2 at second site, delayed
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3.1.1 In comparison with other observing methods

Geocenter
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τ

Figure 3.2: The geometrical VLBI principle is illustrated for two antennas with geocentric coordinates
~ri=1,2, which generate baseline vector ~b. The parallel front from the source ~s receives with time delay τ.

by time τ with respect to the first observation (Petit & Luzum, 2010):

τ= t2 − t1 = −
~b · ~s

c
+τgrav +∆L1

~s · ( ~w2 − ~w1)
c

+ (∆L2 −∆L1), (3.2)

where the baseline vector ~b = ~r2− ~r1 between two antennas with geocentric coordinates ~ri=1,2

and respective geocentric velocities ~wi=1,2, c is the speed of light, τgrav is the gravitational delay

with respect to the general relativity principle, (∆L2 −∆L1) is the propagation delay in the at-

mosphere, so that term ∆L1
~s·( ~w2− ~w1)

c denotes this difference in time delay due to the medium

attendance, which is not the vacuum. By disregarding the propagation delay in atmosphere

(∆L2 −∆L1) the reduced form of equation (3.2) is called the geometric delay and demonstrates

the so-called geometric principle of the observed delay in VLBI.

The analysis centers process obtained group delays to estimate station and sources positions

and EOP together with troposphere and clock parameters. To achieve this goal various modifica-

tions of the Least Squares Adjustment (LSA) are introduced. Regardless of the particular method

the main procedure stays the same: reductions as recommended by Petit & Luzum (2010) are

implemented to obtain the theoretical delays which are calculated ' C' values to complete a pair

' O' -' C', where ' O' is the observed group delays. The LSA is then applied to find the closest fit

to the differences ' O'-' C'. Namely, based on the theoretical approach given by equation (3.2) and

called the total delay τ forms ' O'-' C' with the group delay. The rest of recommended reductions

are mainly applied to the station coordinates and EOP and discussed in section 3.2.

3.1.1 In comparison with other observing methods

The VLBI method represents a highly accurate and precise measurement technique for a simul-

taneous realization of celestial and terrestrial object positions as well as the Earth axis orientation

in space as independent parameters in the EOP set. The other geodetic techniques Global Nav-

igation Satellite System (GNSS), Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR) and

Doppler orbitography and radio positioning integrated by satellite (DORIS) can report EOP as a
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3. The VLBI method

dependent set only (Gross, 2015).

These geodetic systems support a monitoring of Earth rotation, but each of them was designed

for the different purposes. First on the list, GNSS is based on a two-segment system a ground

network and a satellite segment. Systems with the largest constellations are Global Positioning

System (GPS), GLObal NAvigation Satellite System (GLONASS) and Galileo. The fundamental of

GNSS is that the ground segment receives satellite-transmitted signals for the high-accurate spa-

tial positioning. The other geodetic techniques, SLR and LLR, are designed to measure the round

laser-beam track from the ground station to a special satellite or a lunar reflector accordingly. The

last one, DORIS is based on measurements of the Doppler effect and is designed for precise orbit

determination as required for altimetry/ocean applications. All these geodetic observing systems

have an orbit determination problem in common, i.e., polar motion and LOD can be obtained as

independent parameters only. The last one, DORIS represents the least accurate solution for these

parameters, mainly due to a significantly smaller constellation of satellites and ground network

than GNSS. Weather conditions are problematic for SLR and LLR, however SLR analysis is that

one included in the combined solution for EOP and provides pole coordinates at the 3 to 5 order

worse estimated uncertainties (Gambis et al., 2015) than VLBI (≈70 mas by International VLBI

Service for Geodesy and Astrometry (IVS)) and GNSS (≈40 mas by International GNSS Service

(IGS)) methods correspondingly. Also, single-technique solutions for EOP from the VLBI and GPS

were found to be in a good agreement (Artz et al., 2012). Yet, routine GPS solutions show a better

accuracy than VLBI in polar motion and, at the same time, VLBI solutions of dUT1 exhibit a similar

accuracy level as achieved for LOD from GPS (Gambis et al., 2015). In general, VLBI results are

affected by some deficiencies mainly due to the available global coverage of the network which is

inferior to the GNSS network and, consequently, the number of observations obtained by GNSS is

significantly large than VLBI can afford. This advantage highlights GNSS among other satellite-

based observing systems, because the number of observations in processing decreases the formal

errors of any estimates. Still, the resonance with orbital satellite periods limits GNSS analysis in

the high-frequency band of Earth rotation, where the VLBI analysis provides the high-frequency

dUT1 and polar motion variations without a lack of signals in the diurnal band and usually more

accurate account in semidiurnal band.

All operated observing systems, including VLBI, report the coordinates of CIP, while the

ring laser gyroscope technique is designed to sense the instantaneous Earth's rotation axis

(Mendes Cerveira et al., 2009). Analyzing ring-laser data might have been a solution for vari-

ety of geodetic problems including the subject of this thesis – atmospheric tides (Schreiber et al.,

2004). First attempts to evaluate the effects of ocean tides from ring-laser observations were

undertaken recently (Tercjak & Brzeziński, 2017), but numerous technical issues must be solved

before presenting any ocean tide model in Earth rotation. This gyroscope at station Wettzell in

Germany can be maintained in a stable observing mode for several hours and days, and currently

about 100 days are available for processing (Tercjak & Brzeziński, 2017). Such new techniques

can provide more opportunities, for instance, in combination with VLBI and GNSS. Because this

is the only one station operated now in testing mode, an improvement might be seen in future.
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3.2 Applied reductions

3.2 Applied reductions

The IERS Conventions (Petit & Luzum, 2010) define the term ''reductions'' as models which

represent various geophysical effects. Their accuracy is expected to suffice the 1 mm level in

terms of station positions. To conduct a reliable processing, reductions are required to be ob-

tained independently on the VLBI analysis or the other geodetic observing systems. Besides, if

any constraints are applied to calculate reductions, they should not be provided by the VLBI anal-

ysis. The set of reductions is divided into station positions, EOP and light propagation. In the

current processing, the main departure from the set of models recommended by the IERS Con-

ventions is the inclusion of geophysical corrections for the station positions to take into account

the non-linear effects.

3.2.1 Station positions

In VLBI analysis one of the main outcome or ''product'' in conventional terminology is the

International Terrestrial Reference Frame (ITRF). The realization of the ITRF is provided by linear

station positions ~X0 and velocities ~̇X at the reference epoch t0:

~X (t) = ~X0 +
~̇X (t − t0), (3.3)

where t is a moment of observation, on which coordinates ~X (t) are requested. Most of so-

lutions are obtained on the basis of the ITRF2014 unless it is specified otherwise. The other

realization applied in the current processing is the VieTRF13 (Krásná, née Spicakova, 2014). Af-

ter the release of the last official ITRF2008, this intermediate solution VieTRF13 was chosen to

be an internal model for the data analysis implemented in Vienna VLBI and Satellite Software

(VieVS) commonly used at the TU Wien.

The stations are placed on the ground of the Earth, and each component of the network,

thus, experiences the same deformations as the underlying crust. The ITRF definition expects the

applications of time-dependent corrections∆ ~̇X i(t) listed in Table 3.1 as additions to the reported

reference points in order to obtain the instantaneous station positions ~X I(t):

~X I(t) = ~X (t) +
∑

i

∆ ~X i(t) (3.4)

The range of these reductions varies from those driven by Earth's gravitation itself and move-

ments in the presence of gravitational fields raised from Sun and Moon; to that ones due to irreg-

ular effects. Those models are referred to as solid Earth tides (Mathews et al., 1995) and ocean

tides. Also, the IERS Conventions recommend the cubic model of secular motion of the pole,

so-called mean pole and rotational deformations due to polar motion. And, the model by Desai
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Reduction Model by Value

Solid Earth tides (Mathews et al., 1995) up to 40 cm
Ocean tidal loading varied 10 cm
Pole tide loading (cubic model) IERS Convention model several cm
Ocean non-tidal loading varied 1 cm
Atmospheric non-tidal loading varied 2.5 cm
Hydrology loading varied < 1 cm
Atmospheric tidal loading varied < 2 mm
Ocean pole tidal loading (Desai, 2002) up to 2 mm
Post-seismic deformations for ITRF2014 - up to 80 cm

Table 3.1: Various effects on the displacements of reference positions on the crust.

(2002) is to account for this centrifugal effect of polar motion called ocean pole tide included in

conventional set of reductions as well. These effects contribute mainly to the low-frequency band

of periods of 14 and 12 months. The periodic effects due to ocean tides are taken into account

by ocean tidal loadings provided by, for instance: FES (Lyard et al., 2006), Empirical Ocean Tide

Model (EOT, Savcenko & Bosch, 2012), TOPEX/Poseidon global tidal model (TPXO, Egbert & Ero-

feeva, 2002). For all these series, on-going and updated versions can be found. Based on some

of these models, the special services by Bos & Scherneck (2007) or by Petrov (2015) report the

corresponding site-dependent coefficients represented by amplitudes Ac j and phases ϕc j . The

resultant vector ∆c is computed by substituting these amplitudes and phases in the expression

similar to the equation (2.28), where astronomical argument is described by ψ j(t) for 11 tides

in total:

∆c = Ac j cos(ψ j(t)−ϕc j). (3.5)

The account of ocean tides was agreed to use only 8 major ocean tides in diurnal (K1, O1,

P1 and Q1) and semidiurnal (M2, S2, N2, K2) bands and 3 long-term tides (M f , Mm, SSa). The

obtained vector ∆c is one of the corrections ∆ ~X i to the chosen station.

The other regular variations are due to the signals at the frequencies ω(S1,2) = 1,2 cycles

per day of the S1 and S2 tides. The atmospheric tides utilized in this analysis are provided by

next services by Petrov (2015); van Dam (2010); Wijaya et al. (2013). The corresponding station

displacement can be calculated similar to ocean tides:

∆S1,2 = Ac(S1,2) cos(ω(S1,2)T ) + As(S1,2) sin(ω(S1,2)T ), (3.6)

where Ac(S1,2) and As(S1,2) are the harmonic coefficients per station, T is time moments t in

days of the Universal Time (UT1).

Both corrections, ∆c and ∆S1,2, are usually given in so-called REN-system. REN-system is
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3.2.2 Light propagation

the local rectangular reference system, whose axes are placed along with Radial, East and North

directions in topocentric system. These corrections in REN require the transformation to the

geocentric reference frame ( ~X i = (∆X ,∆Y,∆Z)) for reductions as follows







∆X

∆Y

∆Z






= Ω ·







∆R

∆E

∆N






, (3.7)

where Ω is the rotation matrix on two angles of the site ellipsoidal latitude ϕ and longitude

λ correspondingly:

Ω =







cosϕ cosλ − sinλ − sinϕ cosλ

cosϕ sinλ cosλ − sinϕ sinλ

sinϕ cosϕ






, (3.8)

Additionally, the non-linear effects derive from the atmospheric thermodynamic processes

and hydrodynamic interactions in the ocean system. In reductions these effects can be taken

into account by ocean and atmosphere non-tidal loading models. In this thesis, non-tidal atmo-

spheric loading is provided by TU Wien (Wijaya et al., 2013) and Goddard Space Flight Center

(GSFC) (Petrov, 2015). Non-tidal ocean model is spread separately by Estimating the Circulation

and Climate of the Ocean, Phase II (ECCO2, Menemenlis et al., 2008) or as a part of non-tidal

atmospheric loading (Carrére & Lyard, 2003). The consistency of the ECCO2 with TU Wien or

GSFC is doubtful because this model might have a lack in modeling (Menemenlis et al., 2008).

Notwithstanding a non-linear geophysical model inclusion in reductions is not a part of the IERS

Conventions, geophysical corrections due to atmospheric non-tidal loading provided by TU Wien

and hydrology by GSFC are applied for each solution undertaken in this study. Since a consistent

non-tidal ocean model with TU Wien was not found, in the current reductions these geophysical

effects are not introduced.

The other kind of non-linear deformations arises from the fact, that the Earth structure itself

is somewhat different from a simple solid model; the Earth body experiences deformations as an

elastic body, cf. the IERS Convention model. Recently, post-seismic deformations for ITRF2014

were released to take into account some part of the deformation effects (Altamimi et al., 2016).

These effects are approximately up to 30 cm in average and up to 80 cm in maximum can be

seen for specific station. These corrections represent the major difference with respect to the

previously used VieTRF13 for the high-frequency ERP analysis (Girdiuk et al., 2016b).

3.2.2 Light propagation

The quasar's light detected by the ground network passes through the atmospheric layers

where it undergoes atmospheric propagation delay. Whereas ionospheric part of this delay can
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be accounted for by dual-frequency band observations in VLBI, the path going through the tro-

posphere needs a special treatment. By the accepted approach (Nilsson et al., 2013), the tropo-

spheric delay can be divided into a hydrostatic (h) and a wet part (w) of zenith delay ∆L

∆L =∆Lz
h ·mfh(e) +∆Lz

w ·mfw(e), (3.9)

where e is the elevation angle,∆Lz
h is a priori zenith hydrostatic delay (accurately determined,

e.g. in the paper by Davis et al., 1985) and ∆Lz
w is the wet delay part (usually estimated in the

analysis of geodetic observations). The corresponding mapping functions mfh(e) and mfw(e) are

used as provided by Vienna Mapping Function 1 (VMF1, Böhm et al., 2006) to describe a thickness

of the atmosphere by the ratio of the slant delay to the delay in zenith direction. The line-of-sight

delay model can be supplied by orthogonal gradients, in this case, the tropospheric path delay

∆L signifies the symmetric delay ∆L0(e), where gradients (Chen & Herring, 1997) account for

variations in the North (Gn) and East (Ge) directions:

∆L =∆L0(e) +
1

sin(e)tan(e) + C
· [Gncos(a) + Gesin(a)] , (3.10)

where constant value C is 0.0032 and a is the azimuth angle. The a priori model for mapping

function can be provided by Böhm et al. (2006), or, in the other approach, ray-traced delays can be

utilized to calculate mapping function, North and East gradients as well as the zenith delay. The

ray-traced delays applied in the reductions for this thesis were obtained by (Hofmeister, 2016)

for the VLBI analysis.

The technical side of VLBI contains very small but measurable deformity, which modifies the

path delay in addition to tropospheric delay. The daily temperature change induces complex

distortions in the structure of the radio-antennas and, as consequence, reference markers of dish

experience deformations called thermal antenna deformations (Haas et al., 1999; Nothnagel,

2009; Skurikhina, 2001) and axis offsets (Krásná et al., 2014). These particular VLBI related

corrections are small but might be correlated with atmospheric tides due to the same origin of

solar heating.

3.2.3 A priori Earth Orientation Parameter model

The final part of reductions discussed here concerns the position and spin rate of the Earth ro-

tation axis or the CIP, respectively (Petit & Luzum, 2010). The largest signals in polar motion are

the Chandler wobble mainly generated by atmosphere-ocean contribution and forced variations

related to the irregular processes in the atmosphere and ocean such as ocean bottom pressure

variations, ocean currents, atmospheric pressure and winds. The largest regular harmonic vari-

ations of the spin rate are demonstrated on inter-seasonal and long-terms periodicities by solid
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3.2.3 A priori Earth Orientation Parameter model

Earth tides (Yoder et al., 1981) and the somewhat less powerful by ocean tides. The short-period

variations comprise mainly ocean tides and significantly smaller variations of atmospheric tides

in polar motion and spin rate. The Earth's spin rate is affected by additional irregularities related

to climate variability including El Niño and La Niña events in equatorial areas and the Southern

Hemisphere (Kolaczek et al., 2003).

Currently any types of irregularities of the Earth's rotation (Eubanks, 2013), in general, are

not considered in a priori tidal models. And, periodic effects such as the tidal variations for the

solid Earth and the oceans are taken into account in the reductions. Usually, models for zonal

tides applied for the spin rate are stated separately from the product of the Combination Center

(Petit & Luzum, 2010). According to the IAU 2000 resolution, forced motion due to torques

acting on the non-axisymmetric Earth appears in the celestial reference frame with periods of less

than two days. These oscillations are referred to as libration and accounted for as variations of

ERP in the ITRS (Petit & Luzum, 2010) additionally. All remained variations in Earth Rotation

(except ocean signals in diurnal and semidiurnal bands) are supposed to be included in the EOP

time series, which are provided by the IERS Earth Orientation Center and divided into four types

of combined (C) data (Gambis et al., 2001): C01 is a long-term solution of 0.05 year sampling,

C02 and C03 are intermediate solutions given at 5 or 1 day-intervals correspondingly, and, the

last, operational smoothed C04 series with daily sampling are used in routine VLBI analysis.

These C04 time series are updated twice per week and reported values with a delay of 30 days

from the release date. For rapid services the a priori EOP data with less latency is required,

thus Bulletin A widely known as 'finals' (Luzum & Gambis, 2014) was established to supply this

shortage. Bulletin A contains the EOP values, which are partially predicted and based on geodetic

techniques. Bulletin A is different from Bulletin B in that the celestial pole offsets and dUT1 are

obtained from a combination and not only from VLBI. Generally, both bulletins are a product of

the geodetic techniques combination (Gambis & Luzum, 2011) using LLR, SLR, VLBI, GNSS and

optical methods until 1970. The combination of geodetic techniques informs the full set of EOP,

for which several series were already released. One of the earliest is C04 05 time series compatible

with ITRF2005, the next one is C04 08 time series consistent with ITRF2008 and International

Celestial Reference Frame (ICRF)2, and the last released time series are C04 14 (Bizouard et al.,

2017, preliminary draft on 9/Jan/2017) adapted for ITRF2014 and ICRF2. In the current analysis

the last two were used with the appropriate ITRF and ICRF2 realizations in reductions.

Finally, ocean tides are reported by means of amplitudes for 71 frequencies in the diurnal and

semidiurnal bands (Petit & Luzum, 2010). As already implied smaller effects in these bands are

the atmospheric tides with frequencies of 1 cpd and 2 cpd. These signals are not included in the

IERS Conventions for polar motion as well as for dUT1. As it was mentioned above, the compli-

cated mixture of the ocean and atmospheric tides is required to be assigned properly. Namely, at

the S1 frequency the small gravitational tide is about 1µas in polar motion and 0.1µs in dUT1,

which amplitudes are given in the set of 71 tidal constituents. Large variations are observed for

the radiational part (Girdiuk et al., 2016b), and their amplitudes can be obtained in a separate

approach by utilizing atmospheric excitation functions based on the pressure and wind field dis-
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tribution as provided by weather models (for instance, ECMWF). The least studied part is the

hydrodynamic ocean response to the atmospheric forcing. Accounts for this signal can be found

in the most recent ocean models FES2012 and FES2014. The other frequency of atmospheric

tides S2 represents a different magnitude ratio of these excitation sources. In particular, the S2

tide is the principal semidiurnal solar tide in the TGP and possesses considerable amplitude of

about 130 µas in the retrograde band. The radiational part of S2 can be evaluated in analysis of

atmospheric excitation functions only as separate contribution, but such estimate at the S2 fre-

quency is largely suppressed by the standard sample rate of weather models every 6 hours (Arbic,

2005). Some recent ocean models, like FES2012 and FES2014, include the cumulative effect of

the ocean tide and the response to the atmospheric forcing at the S2 frequency simultaneously.
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Chapter 4

Analysis of VLBI observations

This chapter contains the VLBI data set report and its processing. The VLBI analysis is revised

with focus on a calculation of the high-frequency ERP time series and station position variations.

In particular, the a priori geophysical models are discussed in the context of this analysis to disclose

any dependencies.

Geodetic VLBI observations are available in open access and various processing packages were

developed to satisfy requirements and realize reductions discussed in the previous Chapter. These

packages can be found at http://ivscc.gsfc.nasa.gov/ with links to the persons who are

currently responsible for this software. Since this study has emerged at the Vienna University of

Technology (TU Wien), the Vienna VLBI and Satellite Software (VieVS) is applied for the VLBI

data processing (Böhm et al., 2012, a). The Least Squares Adjustment (LSA) is a common method

in VLBI analysis and implemented in VieVS as well as its modifications in other softwares. The first

VLBI sessions were sparse in the beginning and analyzed separately in a single session solution.

The second approach, a global solution, became available when the frequency of sessions had

increased up to at least two sessions per week and a considerable number of observations had

been assembled over several years.

First and foremost, this chapter employs the single session solution because time series of

the parameter estimates are accessed along with their statistical assessment. The single session

solution, thus, can reveal potential inadequacy in parameters or systematic effects. The global

solution is an extension to the single session solution. A precise parameter estimation over the

whole time span characterizes the global solution, where imperfections of particular data are

averaged. For instance, Böhm (2012) demonstrated the determination of the high-frequency ERP

tide terms from a global solution. In this thesis the evaluation of an empirical high-frequency ERP

model for the same tide terms is provided in the single session solution without enlargement of

accuracy.
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4.1 Data set

The first VLBI observations were made in 1979 and described in the first technical reports by

Vandenberg (1999a); however, a community was established 20 years later (Vandenberg, 1999b).

The leading role in the initial community effort belonged to a joint activity of the U.S. Naval Ob-

servatory (USNO) and GSFC, for VLBI provided within National Earth Orientation Service (NEOS)

by launching programs NEOS-A. Following this activity the first Acting Analysis Coordinator (Eu-

banks et al., 1999) was appointed to organize routine data processing flow in Analysis Centers

and present this work together in Analysis reports.

The first observations were scattered in the early 80s, and on a routine basis they were es-

tablished with sessions starting from 21 December 1983 every 5 days and afterwards every week

from May 1993. First continuous VLBI observations were started in 1994 by the first campaign

CONT94. After this successful campaign in 1996, Continuous Observations of the Rotation of

the Earth (CORE, MacMillan et al., 1999) was performed along with Continuous VLBI 1996

(CONT96). Next similar campaigns (CONT) are run currently every 3 years (Behrend, 2013).

And under the CORE program sessions were produced weekly (CORE-3) and monthly (CORE-1,

on Monday). Contemporary regular observations twice per week – the rapid turnaround R1 and

R4 (on Monday and on Thursday, correspondingly) – were launched in 1997. These VLBI cam-

paigns were arranged for EOP determination. Moreover, a great number of specially designed

programs, for instance, 24 hour duration Research and Development (RD) and Research and

Development with the VLBA (RDV) were begun in 1988-1989 and 1997 correspondingly, where

Very Long Baseline Array (VLBA) network consists of up 10 geodetic stations. RDV sessions were

shown recently suitable for EOP analysis (Gordon, 2017) and some of RD sessions are found to

provide reasonable EOP time series in this thesis.

The modern VLBI sessions are provided in the form of 24 hour continuous observations col-

lected from networks including at least 3 antennas maintained by IVS. The intensive sessions for

daily UT1 measurements and some of experimental sessions involve two stations; these sessions

are not suitable for global parameter estimations and, as a consequence, excluded from the data

set in this thesis. In the other kinds of campaigns, for instance, already mentioned RD are de-

signed on wide networks and observe over 24 hours. Since this configuration matches to accepted

assumption on network size, RD were included in data set. Overall, the continuous monitoring

of global parameters requires at least 24 hours VLBI observations duration per session and their

considerable number as well as the rigorous selection of the data set.

As follows, observational data are assembled from routine 24 hour VLBI sessions in several

steps: firstly, all available sessions in period from 1989.10 to 2014.01 were processed, then in

a subsequence of numerous iterations a part of these data was excluded and extended on the

period from January 1995 until mid-June 2015. The final data set includes mainly the opera-

tional R1 and R4 sessions, NEOS-A as well as experimental sessions such as CORE, RD and RDV

sessions, continuous VLBI campaigns (CONTs), and some other experiments (Table 4.1), which

are similar in characteristics to R1 or R4 sessions. Table 4.1 represents main session types in this

38



4. Analysis of VLBI observations

Session type Description Number

AP Asia-Pacific 12
A (AUST) AuScope (mainly Australian network) 23

VLBA-only session 5
CORE-1/-3 CORE 47/37

CORE-A/-B/-C CORE 71/46/5
COH CORE Ohiggins sessions 9

CONT96/CONTM CONT/continuous 3/5
CONT02/05/08 CONT 12/27/13

CRD/CRF CRF deep-south/CRF 29/6
E3/T2 S2 EOP sessions for IVS/IVS TRF sessions 10/56
EUR Europe 79
GG Golden Global TRF 5
GT Global TRF 3
IS IRIS-S 43
NA NEOS-A 282

NAEX/NAP/NAX NAVEX (Navy Experiments)/NAPS/part of CONT94 8/3/5
OH Ohiggins sessions 56
R1 rapid turnaround 572
R4 rapid turnaround 537
RD Research and Development, includes CONT94 93

RDV Research and Development with the VLBA 86
SAT/STRF South Atlantic TRF, Southern hemisphere TRF 1/17

Trans-Pacific/Trans-Atlantic 2/1
WAP/WP Western US plate stability/Western Pacific 10/2

Table 4.1: The main session types used in the analysis are represented. For each session type the description
is given as it can be found in the IVS data base and the number of sessions contained in the analyzed data
set is shown in the last column.

analysis described in more details at the IVS data base. Some sessions designed for TRF or CRF

determination are also suitable for this analysis at the first selection step, which implies that some

amount of data from these sessions (Table 4.1) might have been excluded further.

4.2 A common concept of LSA applied in VLBI analysis

As mentioned, this thesis utilizes VieVS (Böhm et al., 2012, a) where the LSA method is applied

to a classical Gauss-Markov model. As usual, an overdetermined system Ax̂ = b̂ has undergone

the LSA, which minimizes the functional S:

S =min(r̂TP r̂), (4.1)

where the parametrization matrix A consists of n unknown coefficients for m equations with

respect to number of observations. The observations b̂ with known weights wi > 0 compose a
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diagonal matrix P. The solutions can be found for the system where m > n in the form of the

best fit residuals r̂ = Ax̂− b̂, and these observations are supposed to be uncorrelated. The normal

equation system provides a unique solution:

N = ATPA, Q = N−1,

N x̂ = ATP b̂⇒ x̂ = QATP b̂.
(4.2)

A covariance matrix M x̂ should characterize observations, but at practice the co-factor matrix

Q and weight matrix P are used instead:

M x̂ = χ
2Q, (4.3)

and the diagonal matrix of weights P is formulated for a priori variance σ2 as P = σ2 I (I

is identity matrix), which is approximated by a posteriori variance of unit weight χ2 in order to

minimize the functional S:

χ2 =
r̂TP r̂
m− n

, (4.4)

where m− n is the degree of freedom. When the functional S achieves its minimum, the χ2

value equals 1, but this situation is impractical and the values χ2 obtained in the processing of

regular VLBI sessions are typically within the range [1.2−1.6]. In order to attain this level a couple

of additional prerequisites (e.g. a datum definition) are applied for special cases, for instance,

when observations are unevenly distributed and overloaded by noises or outliers. These solutions

are realized by the set of reliable stations and sources, which have been chosen to provide the

reference.

The matrix A of unknown coefficients is composed by derivatives of introduced parameters.

In the regular parametrization (Table 4.2) instrumental parameters which include clock polyno-

mials, and atmospheric parameters (zenith wet delay and tropospheric gradients in north and

east directions) are estimated along with EOP, station and source coordinates in routine VLBI

analysis. Among them the short estimation intervals are adjusted for the frequently changed at-

mospheric parameters and clocks, whereas the other parameters can be resolved once per session

(Table 4.2). The earliest VLBI observations are rather sparsely distributed within an hour as well

as hour to hour, and thus the number of observations per interval can be insufficient. By these

reasons, pseudo-observations, which are an extension in the character of "real" observations, are
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Clock’s Zenith Tropospheric EOP TRF
parameters wet delays gradients CRF

interval 1 h 30 min 6 h 1 d 1 d
relative 1.3 cm 1 cm 0.05 cm 10−4 mas in PM 10 cm for TRF

constrains 10−4 ms in dUT1 10−4 mas for CRF
absolute - - 0.1 cm - -

constrains - 10−4 mas for CRF

Table 4.2: The regular parametrization of the single session solution includes parameters listed at the cap-
tion along with their estimation intervals and relative constraints, which are normally used. The absolute
constraints can be implemented on demand in VieVS for all parameters with corresponding reasonable
values.

implemented to balance this inhomogeneous distribution of observations:

Ax̂ = b̂+ r̂⇔

�

Aro

Apo

�

x̂ =

�

b̂ro

b̂po

�

+

�

r̂ro

r̂po

�

, P =

�

Pro 0

0 Ppo

�

(4.5)

where b̂ro is the vector of observed delays. The parametrization of Apo applies certain restric-

tions on the parameters introduced in the matrix Aro of two kinds: relative constraints between

adjoining estimates and absolute constraints as a ceiling values listed in the Table 4.2. Numerical

values of constraints are chosen arbitrarily to present loose and tight restrictions. For most of

the parameters relative constraints are applied and the rigorous approach by absolute constraints

is avoided in this thesis. The vector of pseudo-observations b̂po sets as a rule to zero to enable

introducing these constraints in the matrix Apo.

With a different intention, the constraints are applied to establish the origin of the reference

frames or datum. The terrestrial and celestial reference frames are evaluated separately by means

of station and source coordinates estimates in the LSA which can produce a number of origins.

The datum, however, requires to be defined unequivocally, so that station and source coordi-

nates need to be restricted additionally in the regular parametrization. Namely, the six Helmert

transformation parameters (except scale, which is currently optional in routine VLBI analysis)

are necessary and sufficient in the three-dimensional space to provide undisturbed transforma-

tion from one datum to another. One datum is defined by a priori used TRF and another is a new

adjusted reference frame. In practice, Helmert transformations are introduced for reliable station

positions only and the rest of stations are excluded from the datum.

4.3 Single session solution

The high-frequency ERP and station position parameter estimates are obtained in the sin-

gle session solutions, for which the concept of Continuous Piece-Wise Linear Offsets (CPWLO) is

introduced (Schuh & Böhm, 2013) at selected intervals for each parameter individually. This di-
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vision into intervals produces the time series of the estimated parameters. CPWLO can also adjust

these intervals in order to minimize correlations among parameters in matrix A. To demonstrate

this approach the delay model given in equation (3.2) can be simplified in form of:

τ= −
b cosϕ

c
, (4.6)

where ϕ is an angle between direction of source and baseline, so that in the application of

the LSA this model is defined for the residuals ∆τ:

∆τ=
∂ τ

∂ b
∆b+

∂ τ

∂ ϕ
∆ϕ, (4.7)

where the derivatives which compose matrix A can be generalized as follows:

∂ τ

∂ b
= −

cosϕ
c

, (4.8)

∂ τ

∂ ϕ
=

b
c

sinϕ. (4.9)

These partial derivatives specify two groups (Sovers et al., 1998): geodetic and astronomical

parameters. In the routine analysis, the first one is represented by station coordinates and the

second one by source positions estimates. The LSA application assumes observations to be in-

dependent, but estimates can correlate among each other. Given that angle ϕ changes entirely

in interval [0◦ : 360◦] within 24 hours and corresponding length b of generated baselines takes

values in interval [bmin : bmax]. The duration of a single session is required to last at least this

time, so that the correlation ρ between station and source parameters equals zero:

ρ(
∂ τ

∂ b
,
∂ τ

∂ ϕ
) =

Cov( ∂ τ∂ b , ∂ τ∂ ϕ )
Ç

Var( ∂ τ∂ b ) Var( ∂ τ∂ ϕ )
, (4.10)

where Var is a variance, so that Var(x) = Cov(x , x) for any random variable x , and Cov is

a covariance

Cov(
∂ τ

∂ b
,
∂ τ

∂ ϕ
) =

∫ bmax

bmin

∫ 360◦

0◦

∂ τ

∂ b
·
∂ τ

∂ ϕ
dϕd b = −
∫ bmax

bmin

∫ 360◦

0◦

b
c
· cosϕ sinϕdϕd b = 0.

(4.11)

Thus, it becomes sufficient to evaluate random variables of station coordinates and source
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positions once per session to ensure their independence. In the processing of regular VLBI ob-

servations the correlation matrix Corr, which shows dependencies between parameters, can be

calculated based on the co-factor matrix Q obtained in the applied LSA. The matrix Q is modified

by the factor χ2, thus the matrix Q takes properties of the covariance matrix M x̂ and the elements

of correlation matrix Corr can be expressed as follows

Corr =Q/
Æ

diag(Q) · diag(Q)T, (4.12)

where diag(Q) denotes a vector of diagonal elements of the matrix Q.

The analysis of correlations can approve the appropriate adjustment of already chosen inter-

vals and improve the accuracy of parameters. Even in the case of the best choice of intervals,

all correlations can not be minimized entirely. For example, results for a routine VLBI session

09DEC16XA_N004 shown in Figure 4.1 exemplify a typical case of a standard division of esti-

mates into intervals. This symmetric matrix demonstrates that the largest dependencies can be

found on the diagonal elements. The strongest correlations are produced by clock polynomials

(the part assigned as clocks on the plot) and among sources, where dependence on clocks are ex-

pected due to a complicated dependence of clocks and observed frequencies (Sovers et al., 1998).

At the same time, correlations of clocks from station to station often can be considered as insignif-

icant, indicating a high level of synchronization. Concerning significant correlations among some

sources the reason may arise from an insufficient distribution during observing times. The re-

markable part is that sources have a complete independence with the rest of parameters. This

fact supports the ICRF realization.

More important, Figure 4.1 illustrates internal dependencies of atmospheric parameters due

to the fact that their partial derivatives include a common dependence on an elevation angle e of

the observing source above the horizon for zenith wet delay ZW D (Böhm et al., 2006) and north

NGR and east EGR gradients (Chen & Herring, 1997) :

ZW D∝
1

sin e
, (4.13)

NGR(EGR)∝
cot e
sin e

. (4.14)

For the concept given by equation (4.10), different intervals were also confirmed practically

(Sovers et al., 1998). As the result, the hourly and half-hourly intervals for the zenith wet delay

are widely used in routine analysis as well as 6-hour intervals for the gradients evaluation. Atmo-

spheric parameters are correlated also with station heights (Sovers et al., 1998) because of the

same dependents on the elevation angle e:
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Figure 4.1: The symmetric correlation matrix of single session 09DEC16XA_N004 illustrates the regular
single session parametrization. The diagonal elements are dependent (ρ = 1). This matrix is composed
of parameters listed in the Table 4.2 and abbreviated as clocks (clock's parameters), zwd (zenith wet
delay), ngr and egr (tropospheric gradients in North and East directions correspondingly), EOP, sources
and (X,Y,Z) for CRF and TRF. The black blocks separate the zenith wet delay estimates for each station
(5-station network). The white block highlights the tropospheric gradients in North and East directions.
The red block underlines EOP estimates.

∂ τ

∂ R
∝− sin e, (4.15)

where R is a displacement in radial direction related to a rectangular coordinate system with

its origin in geocenter as defined by equation (3.7). In Figure 4.1 estimates are obtained in a

rectangular coordinate system, so that dependence in radial direction propagates mostly into X

component of the station position vector. Besides, some correlations may appear in Y and Z

components.
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Figure 4.2: The time series are obtained on the basis of network geometry selection (cyan) and without
(violet color). The panels demonstrate time series of x and y component of polar motion (upper and
middle) and dUT1 (lower).

In practice, due to insufficient time and spatial resolution among observations, outliers appear

for time series of parameters estimated in the LSA. To ensure reliability of the obtained data, the

standard deviations (std) can be calculated for each parameter and epoch:

std = χ ·
Æ

diag(Q). (4.16)

Yet, the analysis of this time series cannot be straightforward because the VLBI sessions are

performed on a non-continuous basis. The temporal distribution within a session affected by the

CPWLO application since it separates data in intervals.

Arguments concerning data selection

The VLBI method is found to depend on baselines in particular (Moritz & Müller, 1987),

i.e., the longer the baselines generated during a session, the better the obtained ERP estimates,

which are the aim in the processing revision. In order to specify the limiting range of these

baselines, a commonly used factor, which condenses the impact of all baselines and all directions,

is the volume of the VLBI network (Dermanis & Mueller, 1978). Besides some technical factors,

for instance, station equipment issues, the network volume is the global characteristic for the

network description as entire system. Regional networks as well as sub-networks during session

defined usually by shorter baselines can be distinguished from the global networks by means of
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this parameter. Thus, the network geometry is applied within an interval of an estimation (1 hour

for ERP) to explore the reason for large uncertainties in parameter estimates at particular epochs.

It approves that a number of outliers in the time series of the parameter estimates can occur due

to the existence of small sub-networks per hour, when the designed network for a whole session

exhibits a global coverage.

The data set was revised on the basis of the network geometry following to Derma-

nis & Mueller (1978). Both the network volume computed from tetrahedrons (Malkin, 2009)

as well as the east-west and the north-south orientation of baselines were employed as selection

criteria. Different subjectively chosen thresholds were applied on this network measures to subset

the high-frequency ERP time series into a higher-quality data set. Finally, the network geometry

restriction removes up to 50 % of the original time series. The vast majority of these data are

sessions performed in different kind of test mode (NAEX, but most of them are not included in

Table 4.1 because these sessions do not belong to any of listed types) or using regional networks

(EUR, WAP). The rest of outliers were found among all other session types as result of small

sub-networks generated within globally designed sessions. The overall feasibility of selection cri-

teria is verified by the fact that the reduced data are unencumbered by gross statistical outliers

in comparison with the complete data set (Figure 4.2). After eliminating these outliers based on

the network geometry, some smaller features can be still retained in the reduced data set (Fig-

ure 4.2). Fortunately, these questionable estimates can be down-weighted individually by means

of standard deviations obtained in the LSA of single session solution.

4.3.1 Earth Rotation Parameters time series

The short-period atmospheric effects in Earth rotation occur at similar frequencies as influ-

ences from ocean tides, so the first prerequisite is to employ a reliable empirical ocean model.

Most of the models include the tidal terms that account for the gravitational forcing only, for in-

stance, the high-frequency Conventional model. For S1, the TGP includes two spectral lines close

to 1 cpd, while the radiational part remains unaccounted for. Since the ocean impact is known

well at the predefined frequencies and a number of ocean models are available, ocean tides can

be reduced in the processing. The atmospheric tides, thus, will be seen as addition systematic

deviations at the frequency of S1 (S2 atmospheric part is omitted, see Chapter 2).

Evaluation of the empirical high-frequency tide terms requires two-step single session solu-

tion. It is necessary especially for proper nutation reductions and FCN effect, which is not a part

of the IAU 2006/2000A model (Petit & Luzum, 2010). In fact, nutation in the terrestrial reference

frame is the retrograde diurnal polar motion, but with regard to the IERS Conventions this motion

is considered in the celestial reference frame as the long-term CIP motion. The estimation of the

high-frequency polar motion along with nutation at hourly intervals, thus, provokes correlations.

Since the subject of interest is the high-frequency ERP time series, nutation is fixed to the a priori

values. As follows at the first processing step, the full set of EOP is estimated daily as in routine

processing. In this case, a priori model is used for polar motion and dUT1 only and for celestial
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Figure 4.3: Correlation matrix is shown as in Figure 4.1 but station coordinates are fixed to the a priori
model.

pole offsets (dX , dY ) the model (Mathews et al., 2002) is discarded to produce their total values.

At the second step, these obtained daily EOP time series are implemented as the a priori model

(instead of C04 08 or C04 14 time series), so all unmodeled effects are assumed to be included.

In the single session solution the daily EOP are estimated together with other parameters,

which are the same as for a routine processing (Table 4.2). At the second step the subset of

the hourly ERP is introduced in the same parametrization matrix instead of daily EOPs. Because

other parameter uncertainties propagate to EOPs or ERPs seen, e.g., in the correlation matrix in

Figure 4.1, the standard parametrization is revised in case of the two-step-processing. The ma-

trices in Figures 4.1, 4.3, 4.4 show parameter dependencies of the first step in this processing to

exemplify common picture of correlations in both solution steps. Black, white and red blocks sep-

arate the zenith wet delay, tropospheric gradients in North and East directions and EOP estimates

accordingly. Next approaches are expected to decrease correlations in those blocks.
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Figure 4.4: Correlation matrix has source fixed relative to Figure 4.3.

A first possible reconsideration is to change estimation intervals governed by equation (4.10).

Because a necessary number of observations is provided by the modern sessions (since mid of 90s),

which compose the analyzed data set, the ZW D at the 30 minutes estimation interval (Figure 4.1)

can be resolved efficiently (without outliers). This analysis follows the regular parametrization

(Table 4.2) and already uses 30 min estimation interval, however sometimes the 60 minutes

estimation interval for the ZW D can be accepted. Usually, it is required for the earlier sessions,

in which the number of observations per half an hour or even per hour can be insufficient.

In a different approach, some parameter estimates can be fixed. Owing to the known relation

with the ZW D (equation 4.13) fixing of station coordinates to the a priori model given by ITRF

can be found as a reasonable choice. This approach demonstrates smaller correlations of the

troposphere with other parameters in Figure 4.3 (cf. black blocks formed between zwd and ngr,

and less visible in white block between ngr an egr and red block for EOP).

Similar to the station positions this approach is used to disregard by source estimates. Corre-
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sponding parametrization was shown sufficient (Girdiuk et al., 2016b) for deriving an empirical

model of the high-frequency ERP tide terms. In other words, the presented solution can produce

a better high-frequency time series with realistic statistics given by the standard deviations in

the LSA of the single session solution. These standard deviations are expected to down-weight

remaining deficiencies in the reduced data set (Figure 4.2). Ultimately, correlations between pa-

rameter estimates (Figure 4.4) can be considered already insignificant, thus this parametrization

in Figure 4.4 is finalized. This solution infers that reductions for the terrestrial and celestial refer-

ence frame are reliable and any ambiguities introduced by mismodeling of the reference frames,

which might change the EOP determination, are negligible.

The a priori EOP model is the most important part of the successful determination of accurate

EOP and ERP time series. The widely used a priori IERS C04 08 EOP model is discussed in details

below. In particular, an affinity of celestial pole offsets given in IERS C04 08 Conventional model

and the EOP time series evaluated at the first step of the processing is analyzed. Additionally,

the high-frequency ERP time series, which are estimated at the second step, are compared with

results from GNSS analysis.

The a priori EOP and ERP time series

A priori IERS C04 08 time series can be introduced in the reductions for the EOP as well as

recently released IERS C04 14. Here, a priori IERS C04 08 time series and the EOP time series

obtained on their basis (at the first processing step) are considered (Figure 4.5). An analogous

treatment using a priori IERS C04 14 time series shows similar results.

The model by Mathews et al. (2002) provides an account for nutation and precession, however

for determining sub-daily Earth rotation variations the recommendation is to estimate celestial

pole offsets within the same solution for the particular geodetic technique. As follows, the total

celestial pole offsets dX and dY are evaluated at the first step (Figure 4.5), where the general

nutation model (Mathews et al., 2002) is excluded from reductions. The obtained time series

contain some additional variations which are not part of Mathews et al. (2002) model along with

possible noises included in VLBI observations. For an intermediate assessment of the obtained

results at the first step, the Pearson correlation coefficients for these EOP sets can be calculated

as:

ρEOP0,EOP =
Cov(EOP0, EOP)
σEOP0

σEOP
, (4.17)

where Cov is covariance, σEOP0
and σEOP are respective standard deviations of the C04 08

EOP and the obtained EOP time series. These coefficients are calculated individually for each

parameter. The celestial pole offsets dependencies ρdX0,dX and ρdY0,dY are 0.71 and 0.72 corre-

spondingly. At the same time, Figure 4.5 demonstrates remarkable joint variability of estimated

and a priori polar motion and dUT1 (ERP). Numerical values ρERP0,ERP=1 for each of the three
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Figure 4.5: A priori IERS C04 08 time series (blue) and obtained time series (red). The full set of EOP
(red) was obtained at the first step of the processing with parametrization matrix shown in Figure 4.4. At
the panels from top to bottom: x and y polar motion, dUT1, dX and dY celestial pole offsets are plotted.

parameters infer their total dependence, thus these daily ERP time series compose the same geo-

physical effects.

The EOP time series based on only one technique, for example VLBI, might contain a drift or

other systematic effects, which might be seen in a comparison with similar ERP solutions deduced

from the analysis of GNSS observations (Figure 4.6). The comparison with Conventional time se-

ries (Figure 4.5) might not reveal these problems because this solution is combined by utilization

of several geodetic techniques including VLBI.

The analysis of GNSS observations was performed at TU Wien, Department of Geodesy and
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Figure 4.6: Three types of GNSS-based time series. The first, only GPS observations are available in period
of January to December marked by blue color; the second set of GPS and GLONASS observations – October
to December 2015 marked by red color; the last data from GPS and Galileo – period of January - June 2016
marked by yellow color.

Geoinformation, Advanced Geodesy, by the GNSS group (within the project ''GNSS-EOP'') in col-

laboration with Space Research Centre of the Polish Academy of Sciences at Warsaw, Department

of Planetary Geodesy, Poland (Weber et al., 2017). In the current comparison, the hourly high-

frequency ERP time series obtained for 3 time spans (Figure 4.6) are used. The first time span is

based on GPS observations only from January to December 2014. The second set includes obser-

vations of two satellite systems, GPS and GLONASS, from October to December 2015. The last

set is obtained on the basis of observations of two other observing systems, GPS and Galileo, over

the period January – June 2016.

The processing of GNSS data is computationally costly and comprises data from more than

a hundred continuously observed stations (174 sites, where no-net-rotation (NNR) condition is

applied for 81 stations). In both processing of GNSS or VLBI data to produce the high-frequency

ERP time series, the calculation method and the underlying model for EOP (GNSS uses the IGS

Final Products provided by IGS) evoke differences. Nutation and precession offsets are obtained

similar to the first step of the VLBI processing in this Chapter, however due to the orbit error

propagation these parameter estimates are supplied with tightened constraints and not considered

further. The a priori EOP model is similar to the Conventional EOP time series, C04 08 or C04

14, and other reductions of GNSS and VLBI are entirely or partially comparable, for example, the

ITRF2008, the high-frequency Conventional model and the ocean tidal loading (FES2004) for the

station position variations.

The available GNSS observations are continuous within each of the three subsets and con-

tribute with about 15 000 points of hourly parameter estimates. These time series can be com-

pared with the high-frequency ERP time series obtained at the second step in this VLBI analysis.
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Figure 4.7: GNSS time series (marked red) are plotted along with VLBI time series (marked blue) at the
same epochs during the special VLBI campaign CONT14.

Unfortunately, VLBI observations are significantly sparser in time than GNSS, and common epochs

are found for only about 800 points of hourly estimates. The same epochs in both time series

were identified in 2014 and correlation coefficients were deduced accordingly. Perfect agreement

(ρ = 1) can be seen for total ERP values (equation (4.17)), but these statistics are mainly influ-

enced by the long-term effects. To illustrate their similarities in more details, the high-frequency

variations are considered only. For this purpose, the specially designed campaign CONT14 was

chosen from VLBI data set. These observations during CONT14 are a sequence of single sessions

provided every day within period of 14 days from 6 May to 20 May, so this is the most dense set

of hourly VLBI estimates (Figure 4.7). Over this relatively short time span a curve (polynomial

of 5th degree) can be fitted to the estimates to separate the high-frequency variations from long

period effects. In this case, a correlation coefficient (ρ) of nearly to zero (0.08) can be found for

y component of polar motion, and a somewhat stronger correlation (0.23) for the x component

of polar motion. Hence, both components of polar motion can be considered as independent

between VLBI and GNSS-based solutions. By contrast, dUT1 shows midmost value (0.53), which
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4. Analysis of VLBI observations

Atmospheric Weather model land-sea mask
model

TU Wien Tidal: op. ECMWF DCDA every 3 h determined from ETOPO5
Non-tidal: ECMWF 6 h with 1◦ resolution 1◦ resolution

GSFC NCEP Reanalysis 6 h from FES99
with 2.5◦ resolution 0.25◦ resolution

Ocean Weather model Uniform grid
model

FES2004 S1: from R. Ray, operational (op.) ECMWF 6 h 1/8◦

FES2012 S1: op. ECMWF DCDA 3 h analysis 1/16◦

Table 4.3: Description of the underlying models on which computations of the atmosphere and oceans are
based. Atmospheric (TU Wien and GSFC) and ocean (FES2004 and FES2012) models are mainly different
due to listed weather models and land-sea mask or uniform grid in case of ocean models.

can be enlarged slightly by lessening CONT14 to subsets, for instance, the second part of cam-

paign data yields 0.6 for dUT1. In general, these high-frequency ERP variations are expected to

represent a high level of affinity in disregard to the observing technique. This lack in similarities

might be explained by the crucial disadvantage of GPS constellation, which is a deep resonance

with the Earth's rotation (Lara et al., 2011). The GPS revolution period is 11 hour 58 minutes

and the sidereal period of the Earth's rotation is 23 hour 56 minutes, thus this resonance effects

occur twice and once per day. This main weakness introduces an ambiguity in the high-frequency

diurnal band, which is problematic for the assessment of S1, in particular. The main distinctive

feature of GNSS results is its ability to provide a continuous high-frequency ERP time series, as

follows a sampling (4 hours for the utilized data) is necessary to apply and a harmonic decompo-

sition with the orbit resonant frequencies can induce numerous artefacts in sub-diurnal spectrum

as 1/n cycle per day for integer value n (Weber et al., 2017).

4.3.2 Study of various geophysical models

The VLBI method utilizes different geophysical models in reductions to take into account the

influence of the atmosphere and ocean, which affects EOP estimates and station displacements.

In the first part EOP time series were discussed, and the rest of this section deals with station

positions corrections calculated based on geophysical models. These changes in station coor-

dinates are called loadings and divided into two parts according to their physical origin: tidal

and non-tidal loadings. Amplitudes of these effects are provided by the various services and the

computational concept can be seen in Appendix A.

This study is opened with atmospheric loading comparison. Tidal atmospheric loading is

known to induce small variations in station coordinates, by this reason a replacement of the

background models in reductions applied for the VLBI analysis was not expected to propagate

significantly into the estimated parameters. To demonstrate this fact two atmospheric models

provided by TU Wien (Wijaya et al., 2013) and GSFC (Petrov & Boy, 2004) were chosen. These

models differ mainly in terms of the calculation methods, the weather models and the land-sea
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Figure 4.8: Atmospheric tidal loading provided by TU Wien for displacements in radial component given
in cm is shown. Frequently observing VLBI stations are plotted as overlay.
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masks (Table 4.3). The treatment of the atmospheric pressure field, which is the fundamental

quantity in the modeling of the atmospheric loading, is divided into tidal and non-tidal parts

(Ponte & Ray, 2002) for both models. The underlying weather models for these computations,

however, differ from provider to provider, e.g. ECMWF data is given with shorter time step than

data from the U.S. National Centers for Environmental Prediction (NCEP). The ECMWF employs

a delay cut-off technique (DCDA) to achieve 3-hourly sampling, which in turn accounts better for

the semidiurnal periodicity. Moreover, the ECMWF model is run with finer resolution than the

NCEP Reanalysis model. The other distinctive characteristic concerning the atmospheric loading

is that the GSFC applies a higher resolution land sea-mask.

The atmospheric tidal loading provided by TU Wien model is shown in Figure 4.8, where

the radial component of the load S1 tide, which carries the majority of tidal loading power, is

illustrated. This load S1 tide exemplifies station displacements, which need to be applied for

station positions as reduction. The maximum of this distribution is seen over Central Africa with

the second maximum over South America; yet, among geodetic sites the amplitude maximum of

the load tide (see Appendix A) is achieved at the frequently observing VLBI station Katherine in

Australia (1 mm) followed by station HartRAO (Hartebeesthoek Radio Astronomy Observatory)

in South Africa.

The different impact of TU Wien and GSFC models in VLBI analysis is assessed by means of

relative variance reduction R expressed in percentage:

R =
BLR2

m − BLR2
0

BLR2
0

∗ 100% (4.18)

where BLRm denotes a solution where the geophysical model (TU Wien or GSFC) is used and

BLR0 represents a solution without this model (Table 4.4). The variance reduction is calculated

for the baseline length repeatability (BLR):

BLR=

√

√

√

√

∑

wi(bi − b̄)2
∑

wi −
∑

w2
i
∑

wi

, b̄ =
1
n

∑

bi , (4.19)

where bi is a baseline length and b̄ is a mean baseline length, wi is weighted value based on

correlation matrix data provided by the LSA (Figure 4.1).

The relative variance characterizes a ratio of the squared repeatabilities per baseline to mea-

sure the geophysical model impact for each applied model. For this reason the station coordinates

are introduced in the parametrization of the single session solution, which inclusion is only dif-

ference from the aforementioned final parametrization (Figure 4.4). As follows, several solutions

are obtained additionally for this study (Table 4.4), that is, two solutions with respect to both

TU Wien and GSFC (tidal and non-tidal loadings included) and two solutions for each provider
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Figure 4.9: Relative variance reduction for VLBI baseline length repeatabilities when applying tidal (right
panel) and non-tidal (left panel) loading models by TU Wien and GSFC. Reference solutions are those
without loading corrections.
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Solution Included part of atmospheric model Ocean model included as
TU Wien/GSFC FES2004

1 Tidal and non-tidal Tidal
2 Tidal Tidal
3 Non-tidal Tidal
4 Tidal and non-tidal No model included
5 Tidal and non-tidal Tidal FES2012

Table 4.4: Solutions are performed to study different models accounted for geophysical effects. The com-
bination of first and third solutions is used to assess atmospheric tidal contribution; the first and second
solutions provide a result of the atmospheric non-tidal loading; based on first, forth and fifth solutions the
ocean loading impact is tested.

disregarding tidal and non-tidal loading (two solutions as well). To calculate relative variance,

the baselines are required to be involved in observations in at least 100 sessions and the tidal

and non-tidal loadings should be available from both models for each station over the duration

of all sessions. Thus, a number of baselines was excluded in this comparison because of these

restrictions.

The results derived from these solutions (Table 4.4) are used to represent the atmospheric

tidal loading comparison in the left panel and non-tidal loading in the right panel (Figure 4.9),

where the positive half plane contains the baseline length repeatabilities improved by applied

corrections. This practical implementation of the tidal and non-tidal atmospheric loadings proves

that the results from models by TU Wien and GSFC exhibit statistically insignificant discrepancies.

Only a couple of baselines evince improvement in usage of one model instead of the other. For

instance, TU Wien model indicates a better account for the tidal loading for baselines Fortleza-

HartRAO (Fortleza is accepted shortcut for station in Fortaleza, Brazil) and Kokee-HartRAO (Ko-

kee located in Kauai, Hawaii). By looking at the scattering in Figure 4.9, the relative variance

reduction can be found smaller in the case of atmospheric tidal loading than for atmospheric non-

tidal loading for both models. By this reason, the non-tidal part of atmospheric loading should

be introduced in reductions. However, these corrections are still not a part of the IERS Conven-

tions due to the lack of agreement on which existing model of the non-tidal displacements and a

specific procedure for the geodetic reductions may be recommended.

The oceans were already shown to induce larger signals than the atmosphere in the high-

frequency ERP band. The ocean loading corrections to the station positions also account for a

considerably stronger forcing at the same frequency band as atmospheric loadings. Consistent at-

mospheric and ocean models need to be applied in the single session solution, because the sum of

these corrections is assumed to reduce simultaneously the corresponded geophysical effects. Two

ocean model realizations, FES2004 and FES2012 (Lyard et al., 2004, 2006, 2012) were chosen

in order to complement to atmospheric models. Loadings from both FES models are calculated

on a non-standard mesh and released on a uniform grid, which is different from other models.

Besides, FES models are obtained with a much finer resolution compared to the utilized atmo-

spheric models, where the grid is improved for FES2012. The most important characteristic for
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Figure 4.10: S2 load tide from FES2014 ocean model. Frequently observing VLBI stations used in this
thesis are added. The maximum of this load tide is found for station Fortaleza.
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Figure 4.11: The load tide associated with the ocean response at the S1 frequency as provided by FES2014
ocean model. Frequently observing VLBI stations used in this thesis are added. The maximum of this load
tide is found for station Katherine.
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4.3.2 Study of various geophysical models
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Figure 4.12: Relative variance reduction for VLBI baseline length repeatabilities when tidal ocean loading
model is applied by FES2004 or FES2012. Reference solutions are those without loading corrections.

the joint application of ocean and atmospheric models is that the weather model for TU Wien and

FES2012 models is common. Thus these models have a better consistency than other potential

combinations (cf. GSFC and FES2012).

FES2004 or FES2012 (Lyard et al., 2006, 2012) model report the set of the high-frequency and

long-term ocean tides (specified in Section 3.2.1). Especially, the loading effects for the S1 and

S2 tides are important to be introduced in the model properly, because atmospheric tidal loading

exposes signals at the same frequencies. Only the last realizations FES2012 and FES2014b (Lyard

et al., 2012, 2014) provide the hydrodynamic response at the S1 frequency. The load tide associ-

ated with the S1 frequency is of non-gravitational origin and related to the hydrodynamic ocean

response to atmospheric forcing. The ratio between this forcing mechanism and atmospheric load

S1 tide can be seen by considering Figure 4.11 in comparison with Figure 4.8. The maximum of

atmospheric loading is approximately 10 times larger and, thus, the ocean response to this forcing

is not included in the routine reductions. At the other frequency, the amplitude of the S2 load tide

is induced mainly by gravitational origin (Figure 4.10) and less by atmospheric loading. Thus,

the hydrodynamic response to the atmospheric forcing is difficult to separate (Arbic, 2005), and

it is assumed currently to be included in the ocean budget.

The ocean tidal loading influence in station coordinate changes is tested similar to the atmo-

spheric forcing by means of the relative variance reduction between the two models (FES2004

and FES2012) described in Table 4.3. Corresponding solutions (Table 4.4) are obtained using

these models, where the reference solution does not account for ocean loading at all (the forth

entry in Table 4.4, the parameter BLR0 in equation (4.18)) and BLRm is based on FES2004 or

FES2012 model (the first and fifth entries in Table 4.4 accordingly). The station displacements

were calculated by M. S. Bos and H.-G. Scherneck (Ocean tide loading provider, Bos & Scherneck

(2007)) for FES2004 and by Leonid Petrov (International Mass Loading Service, Petrov (2015))

for FES2012. Again the positive half plane (Figure 4.12) depicts baseline repeatability improved

by using FES2004 or FES2012 models. Especially, the largest discrepancies (about 20%) can
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Figure 4.13: The symmetric correlation matrix of single session 09DEC16XA_N004 illustrates the single
session parametrization where station positions are estimated hourly.

be found for baselines Fortaleza-HartRAO, Hobart26-HartRAO (Hobart26 located in Tasmania,

Australia), Kokee-HartRAO, for which the updated FES2012 ocean model represents a better val-

ues. Also, several baselines show degradation of model performance (about 20%), which require

further investigation. Overall, similar to the comparison between different atmospheric loading

providers no evidence can be seen that one of the ocean models prevails over the other.

4.3.3 Tidal signals in variations of the station positions

As it was demonstrated in the previous Section 4.3.2 by means of the BLR, the station coor-

dinates experience the atmosphere pressure loading and ocean loading effects as a consequence

of mass variations in fluid layers. On the one hand, the corresponding account is provided by

various numerical models as already discussed in Section 4.3.2. On the other hand, it is possible

to estimate daily tidal loading contribution directly in the high-frequency variations of station
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Figure 4.14: Zenith wet delay estimated of 6-hour intervals (red) and 1-hour intervals (blue).

positions. The idea of this approach is to assemble the time series of station coordinates for those

stations where the atmospheric signals are close to maxima of the pressure field variations (Fig-

ure 4.8). At least, the detection of the largest diurnal S1 atmospheric signal in variations of station

position is expected, because amplitude maximum of the atmospheric load tides is about 1 mm.

Moreover, the radial component of the S1 tide is evaluated only. An assessment of its horizontal

displacement is discarded in view of their significantly smaller amplitudes. These corrections are

on the sub-millimeter level which is currently unacceptable in the VLBI analysis.

To resolve daily effects of the atmospheric tides, the station coordinates need to be estimated

more frequently than once per session. To realize this requirement, the standard LSA with the

parametrization shown in Figure 4.1 is extended by increasing the number of intervals per sta-

tion from the one offset (daily) to an hourly basis and relative, very loose, constraints of 10 cm

are introduced to the normal equations. These constraints are the same as for daily estimates

(Table 4.2). The new matrix parametrization includes three blocks of the hourly station posi-

tion estimates in accordance with three-dimensional rectangular coordinates (X , Y, Z). Internal

variations among all station estimates in Figure 4.13 within of these blocks are assumed to be

acceptable for this analysis since the largest signal in radial component is intended to be study

only. Also, this analysis requires to adjust the zenith wet delay ZW D interval. In the regular

parametrization, it is preferable to estimate zenith wet delay as frequently as possible (20 min

till 60 min). Owing to the dependence on the elevation angle e for the zenith wet delay given

in equation (4.13) and the station positions in equation (4.15), with assumptions concerning the

interval in equation( 4.10), the zenith wet delay estimation interval is replaced by a longer time

step of 6 hours. These ZW D estimates at 6 hourly basis demonstrates a good approximation to

the standard hourly estimates without a rise of standard deviations (Figure 4.14). While it is im-

possible to avoid these correlations with atmospheric parameters in the parametrization entirely,

different underlying models can improve estimates and their standard deviations. For this pur-

pose, the ray-traced delays are introduced as a prior model for the north and east gradients and

the zenith wet delay. It was indicated (Hofmeister, 2016) that usage of the ray-traced delays can
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Figure 4.15: The distribution of sessions in accordance with the number of participated stations per session.
The relative values are shown for two separate data sets, for Katherine and for Westford.

lead to improvement of the parameter estimates in the analysis of VLBI observations, so several

solutions with fixed gradients are undertaken to test this possibility.

In this modified parametrization implementation of the TRF definition should be reformulated

accordingly. Usually, a TRF evaluation is represented in solutions by means of station positions

estimated by one offset per session for every station in the datum. An origin of the reference frame

is obtained from observations along with station positions and other parameters during one ses-

sion. This approach requires the additional constraints to be introduced in each solution. Thus,

for stations in the datum the Helmert transformations are applied by means of no-net-rotation

(NNR) and no-net-translation (NNT) conditions. The frame origin has to be common for terres-

trial and celestial reference frames, therefore these limitations need to be introduced to define

them uniquely. In the case of source coordinates it is sufficient to estimate the coordinates of that

sources which are not included in this datum and apply relative constraints if it is considered nec-

essary. The datum of stations is reported by ITRF data, where the reference stations are chosen

on the basis of the reliability of available coordinates and their stability in time. The station of

interest, where the hourly estimation interval is set, is excluded from the datum on this occasion

only (even though these station positions are recommended to use by ITRF). The main reason is

that the harmonic variations of hourly estimates propagate in variations of other stations once it

is included in the datum.

One of the VLBI stations, Katherine, is chosen as a station of interest. This station is located

in an area next to region of the maximum of the atmospheric loading (see Figure 4.8). The

ocean response on the S1 frequency can be used by the ocean tide model, for instance, FES2012

(Figure 4.11). The maximum of the FES2012 model is found for Katherine. The coincidence of

these conditions and availability of the models allow this analysis to evaluate the atmospheric

part separately.

The Australian network was exceptionally active in the last years (2014-2015) under the

project AuScope. These data made available the extension of the original data set with new
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sessions. The sessions from this combined data set, in which Katherine participated and match

the selection criteria, are spread densely over 5 years: 389 sessions mid-June 2011 until the end of

February 2016, and compose 365 000 residuals. By an empirical approach the 5-station network

is found to represent the smallest network which is suitable to provide a stable datum; the rest of

stations is sufficient to define an origin properly, if one is excluded. To indicate the considerable

global coverage of selected data, the distribution of antennas participated per session is shown

in Figure 4.15 for Katherine, where the most of data set (23% and 19%) is presented by sessions

consisting of 5 and 9 antennas. Also, an amount of sessions composed on large networks of 8

and 10 participated stations (15% and 13%) is sizable, so this data set is appropriate for further

analysis.

In contrast to the Katherine solution, station Westford in North America is selected as an

example of small modeled corrections to station positions based on pressure variations in one of

the regions of the minimum amplitudes (see Figure 4.8). The ocean response at the S1 frequency

can be neglected in this area. Westford has a much longer history of observations combined 930

000 residuals, but they are sparse in time: in sum 1025 sessions fall in the period of January 1995

till September 2014. These sessions were extracted from the original data set given in Table 4.1.

By analogue to represent the global character of chosen sessions in the data set obtained for

Westford, the dependence on antenna number per session illustrates (Figure 4.15) that the datum

per a single session solution also can be provided successfully.

4.4 Global solution vs. single session solution

In VLBI analysis two methods are widely used: a single session solution and a global adjust-

ment (or a global solution). As an extension to single session solution, the global solution is

based on the normal equations obtained in single solution. Hundreds of single sessions, thus, are

solved simultaneously by the LSA in global solution. The basic set of parameters, which can be

estimated in both methods, is rather similar, yet instrumental and atmospheric parameters are

normally not considered in a global adjustment, because normal equations are collected over a

much longer time span than the periodicities of these parameters. During the time interval of 20

years in the current processing the global solution supplies the parameter estimates of TRF, CRF,

the high-frequency tide terms and axis offsets with a better accuracy, however the single session

solution provides advantages for a study of dynamical processes, in particular for the finalized

parametrization (Figure 4.4).

The goal of global solution building is to achieve significant improvements in the consistent

determination of TRF, CRF and EOP, i.e., the main products of geodetic VLBI. At the dawn of VLBI,

all stations demanded the definition of positions with high accuracy. Currently, the same proce-

dure is needed for new stations which join the working network such as the modern Australia-

New-Zealand network or the brand-new Onsala Twin telescopes. For these stations the single

session solution exhibits large offsets with respect to a priori values, which implies that a priori
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4. Analysis of VLBI observations

coordinates need to be estimated more accurately. The global solution is the best approach to

determine these coordinates as soon as enough observations become available.

When a reliable TRF and CRF are determined along with EOP, the global solution can be de-

voted to smaller effects. For instance, the high-frequency ERP tide terms were introduced as the

global parameters by Böhm (2012). In this thesis, the alternative approach of the single session

solution is applied as the supplementary method to evaluate the high-frequency tide terms. To

testify the adequacy of the main assessment, the global solution (Böhm, 2012) is applied for the

same sessions as those utilized in the single session solution. To obtain this global solution normal

equations are provided by single session solution with parametrization shown in Figure 4.1. Fi-

nally, station and source positions were estimated along with tide terms and axis offsets (Krásná,

née Spicakova, 2014). The tide terms derived from the global solution are included in Tables B.3

and B.4 and discussed in details in the next Section 5, where the same tide terms are calculated

based on the single session solution.
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Chapter 5

Detection of the atmospheric tides

The small amplitudes of diurnal and semidiurnal atmospheric tides set a challenge to de-

termine them properly. These effects are deduced in a consistent approach with ocean tides by

means of relevant methods represented in this Chapter. The present assessment is dedicated to

the atmospheric forcing at the S1 frequency, which provides a larger contribution over the other

excitation sources at this frequency (Ray & Egbert, 2004). The oceanic and atmospheric origins

of the S2 tide cannot be separated easily (Arbic, 2005), thus the S2 tide is discussed moderately

below.

In this chapter, the diurnal and semidiurnal tide terms are evaluated in VLBI-based time series

of the high-frequency Earth Rotation Parameters time series. The supplementary study results of

daily and sub-daily harmonic station position variations are demonstrated as well. The interde-

pendencies between two these aspects of atmospheric tidal forcing, however, are inaccessible as

it is shown in the current processing of the available VLBI data set.

5.1 Method description

The method of the LSA overcomes limitations of the standard method of the frequency analy-

sis, since the obtained data set is inappropriate to resolve all tidal frequencies and phases correctly.

The parameter set of the LSA is specified by the sought-for tides, and accordingly a design matrix

consists of trigonometric functions with tidal arguments at pre-defined frequencies given by TGP.

These orthogonal functions (sinus and cosine parameters) with argumentsωi based on Delaunay

variables compose the corresponding parametrization matrix A for the direct use in the LSA:

A =







... ... ... ...

... cosωi(t j) sinωi(t j) ...

... ... ... ...







tN

t1

. (5.1)

The total number ntides of the considered high-frequency tide terms i is calculated for each
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Figure 5.1: Normalized harmonic functions for the cosine parameters are calculated on the basis of Delau-
nay arguments.

epoch t j in period of [t1:tN ] as given in the obtained time series of the high-frequency ERP (see

Section 4.3.1). These tide terms are listed in Table B.1 (Appendix B) and supplied with Delaunay

variables. A simulation on the basis of equation (2.28) using data in Table 5.1 (a shortcut of

Table B.1 for eight major tides) can be performed to represent the typical harmonic variations

which constitute TGP and, consequently, parametrization matrix A. Several of these modeled

waves (cosine parameters cosωi) in the diurnal (O1 and P1) and semidiurnal (N2 and S2) bands

can be seen over one day in Figure 5.1. Normalized amplitudes imply that the a priori model is

not stipulated. When amplitudes are taken from the IERS Conventions model, a priori variations

(Figure 5.2) can be computed as the sum among the eight major tide terms. Also, the variations of

observed values around this modeled sum are displayed in Figure 5.2, where the high-frequency

polar motion time series derived from the reduced data set (see Section 4.3.1) serve as observed

values and their formal errorsσobs provide error bars per value. These observed data ERPobs were

already combined with the model (Figure 5.2) to provide the vector of observations in the form

of b̂ = (ERP0+ ERPobs). In this case, the total amplitudes eA of tidal terms are evaluated by means

of the weighted LSA, where the normal equation system with weight matrix P can be expressed:

N eA= ATP b̂, (5.2)

and the variables are

N = ATPA, Q = N−1, (5.3)
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5. Detection of the atmospheric tides

Tide Fundamental arguments Period A+ B+ A− B− σ

GMST+π l l ′ F D Ω (cpd) µas µas µas µas µas

Q1 1 -1 0 -2 0 -2 1.1195 -27.9 8.7 -3.5 -1.0 2.1
O1 1 0 0 -2 0 -2 1.0758 -129.1 59.3 -1.9 1.9 2.1
P1 1 0 0 -2 2 -2 1.0027 -49.1 25.6 -3.3 1.5 2.1
K1 1 0 0 0 0 0 0.9973 156.9 -98.4 0.8 -3.4 2.2
N2 2 -1 0 -2 0 -2 0.5274 9.5 -11.1 -2.5 40.2 2.1
M2 2 0 0 -2 0 -2 0.5175 32.4 -73.2 -20.8 255.3 2.1
S2 2 0 0 -2 2 -2 0.5000 -6.3 -33.9 -78.5 110.6 2.1
K2 2 0 0 0 0 0 0.4986 2.7 -12.6 -16.5 24.5 2.2

Table 5.1: The fundamental arguments, periods and tide coefficients are listed for eight major tide terms.
Corresponding tide coefficients and their formal errors are calculated from the high-frequency time series
obtained by the single session solution using reduced data set (see Section 4.3.1).

which provide the solution for total amplitudes of tidal terms:

eA=QATP b̂. (5.4)

By using formal errors σobs of the observed high-frequency time series ERPobs obtained from

the VLBI data analysis of the single session solution (see Section 4.3.1) at the epoch t j , each

element p j of the diagonal weight matrix P is

p j =

∑N
j=1σ j

2
obs

σ j
2
obs(N − ntides)

, (5.5)

Obtained residuals r̂ to the observed time series ERPobs + ERP0:

r̂ = AeA− (ERPobs + ERP0), (5.6)

can be characterized by the variance of unit weight χ2:

χ2 =
r̂TP r̂

N − 2× ntides
, (5.7)

to define the standard deviations {σi}
ntides
i=1 for the tide amplitudes included in the parametriza-

tion A:

σ = χ
Æ

diag(Q). (5.8)
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Figure 5.2: The sum of eight major harmonic functions is shown based on the high-frequency model (rec-
ommended by the IERS Conventions, green line) and this model in sum with estimates from observations
(dashed line).

The LSA is a universal method to obtain a best fit (χ2 = 1) of required parameters. In general,

the implementation described in this section suits for any data, in which harmonic signals are

combined, in particular, the high-frequency ERP time series and the daily and sub-daily station

position variations. Both sets are processed with focus on the atmospheric contribution at the S1

frequency.

5.2 Earth Rotation Parameter time series analysis

In this part atmospheric tides are considered to affect the high-frequency Earth rotation. This

impact is assessed by means of three methods of the Time Series Approach (TSA) simultaneously

with ocean tides in the diurnal prograde band and the semidiurnal prograde and retrograde bands.

The retrograde component of S1 as well as other diurnal signals is related to nutation (Schinde-

legger et al., 2016), and should be observed in celestial pole offsets which are provided in VLBI

analysis internally at the step of the a priori EOP determination. This artificial separation is rigor-

ous, thus, in practice some noises at the frequencies in the retrograde diurnal band can be retained

(Tables 5.1 and B.1). To retrieve a small effect at the S1 frequency over the potential noises two

methods of the TSA were adjusted in addition to the standard approach. The first method (stan-

dard approach) resolves a system of normal equations for 70 tide terms in the same adjustment.

These terms chosen with respect to the IERS Conventions (71 tide term) include the S1 frequency

given by the set of Delaunay arguments (1, 0,-1, 0, 0, 0), where the atmospheric impact is intro-

duced, and exclude another frequency related to the S1 tide (1, 0, 1,-2, 2,-2). Because these two

frequencies are extremely close (separated by the long-term argument ps, see Section 2.2.3), they

cannot be determined together by means of the LSA for the pre-defined tides. In contrast, two

additional methods separate the S1 tide from the other terms of the tide model and assess it alone.

The treatment in the second method is applied for the time series, where harmonic variations of
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the 69 tides collected in the first method were subtracted. In the third method these time series

are rearranged into stacks of 24 hour to simulate the time series of S1 signal. The evaluated total

amplitudes of the atmospheric S1 tide are shown in Figure 5.3 as derived from the complete and

reduced data sets (Section 4). These values might slightly deviate from the results in Table B.1

due to the fact that the high-frequency ERP time series were obtained based on marginally differ-

ent observations. While a range of different estimates can be seen for polar motion in dependence

on the TSA and used data sets, the S1 solutions in dUT1 are indistinguishable, so that triangles in

the right part of Figure 5.3 depict both data sets outcomes. Since the usage of the TSA for com-

plete and reduced data was indicated (Girdiuk et al., 2016b) to cause larger differences among

the obtained S1 estimates than the change in the background model of the mapping function,

Vienna Mapping Function 1 (VMF1) and Global Pressure and Temperature, version 2 (GPT2), or

the temperature, GPT2 and VLBI data file (NGS-file), a representation of those influences and a

study of the other smaller causes are omitted in this thesis.
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5.2.1 The first method

5.2.1 The first method

The standard harmonic models of diurnal and semidiurnal oscillations in polar motion read

x(t j) =
n
∑

i=1

�

(−A+i −A−i ) cosαi(t j) + (B+i − B−i ) sinαi(t j)
�

,

y(t j) =
n
∑

i=1

�

(B+i + B−i ) cosαi(t j) + (A+i −A−i ) sinαi(t j)
�

,
(5.9)

where coefficients next to the trigonometric functions are estimated by means of the LSA and,

in general, form the resultant eA. In particular case of equation (5.9), eA can be substituted by xcos,

x sin, ycos, ysin for both ERP time series x = x(t j) and y = y(t j), where t j ∈[t1:tN ]. Hence, the

coefficients of the components of polar motion can be written as follows:

xcos = −A+i −A−i , x sin = B+i − B−i ,

ycos = B+i + B−i , ysin = A+i −A−i ,
(5.10)

where {A+i , B+i } denote harmonic variations in prograde polar motion and {A−i , B−i } in the ret-

rograde polar motion:

A+i = − 1
2(x

cos − ysin), B+i = 1
2(x

sin + ycos),

A−i = − 1
2(x

cos + ysin), B−i = − 1
2(x

sin − ycos).
(5.11)

The diurnal and semidiurnal variations of the third parameter dUT1, which describes the

Earth rotation, are expressed easier than polar motion because of an independence on the other

components

dUT1(t j) =
n
∑

i=1

�

dUT1c
i cosαi(t j) + dUT1s

i sinαi(t j)
�

, (5.12)

or in terms of LOD

LOD(t j) =
n
∑

i=1

�

LODc
i cosαi(t j) + LODs

i sinαi(t j)
�

, (5.13)

and their coefficients are related in accordance with the requested tide frequencies νi in ra-

dian:

LODc
i = − dUT1s

i · νi , LODs
i = dUT1c

i · νi . (5.14)
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Figure 5.4: The symmetric matrix includes dependencies among 70 tide terms and set of six zero tides
obtained by means of the first method. Cosine and sine components are marked for the major tides by
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These coefficients given in equations (5.11) and (5.14) were evaluated in the first (standard)

method applied in this thesis for 70 tide frequencies and zero tides, where no excitation signals

based on TGP are expected (Table B.1). Zero tides are introduced as extension of the defined

tides to provide an additional tool for statistical assessment with frequencies extracted from the

work by Böhm et al. (2012, b). Namely, by means of zero tides a so-called noise threshold is de-

termined in addition to the definition of 3 σ reliability level, so that all variations under this level

are considered as insignificant. In the standard approach the obtained amplitudes of the atmo-

spheric S1 tide satisfies this limitation. In details, the S1 tide in polar motion (Figure 5.3) shows

a discrepancy of 1 µas between complete and reduced data sets, which is considered insignificant

in view of the obtained level of onefold standard deviations (2.2 µas) or similar average among
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5.2.2 The reconstruction method of the time series

zero tide amplitudes in the diurnal band (Table B.1). In dUT1 the amplitudes of the S1 tide does

not reveal any dependency on strategy of the data set selection as it can be seen for the polar

motion. Besides, the onefold standard deviation in dUT1 (0.1 µs) is twice smaller than zero tide

amplitudes in the diurnal band (Table B.1) and still S1 estimate is above 3 σ-level.

The standard deviations for the tide terms coefficients in equation (5.11) can be computed by

equation (5.8):

σ̄1(A+i /A
−
i ) =

σ(xcos)+σ(ysin)
2 ,

σ̄2(B+i /B
−
i ) =

σ(x sin)+σ(ycos)
2 ,

(5.15)

where σ̄1(A+i /A
−
i )
∼= σ̄2(B+i /B

−
i ), what implies that all of coefficients are accessed at the same

accuracy level. An insignificant scattering of the standard deviations among the tide terms can

indicate the absence of distortion factors at the particular frequencies. General dependencies are

demonstrated by means of the covariance matrix Q based on the matrix P of known weights. A

whole solution reliability for the other tides can be shown in polar motion in Figure 5.4, which

correlations between tide terms reveal the same trends in dUT1. Thus, polar motion correlation

coefficients can be specified as

ρ(xcos, x sin) = cov(xcos,x sin)
σxcosσxsin

= Qp
diagQ diagQT

, (5.16)

The largest correlations appear for couples of the same tide components (cos Q1, sin Q1) in

Figure 5.4, as expected because those components are orthogonal. The set of six zero tides are

shown between labels marked 'zero'. A trace of the correlation coefficients can be conjectured

but these displayed dependencies with other parameters are neglected. This important fact can

serve as a validation for initially arbitrary choice of these zero tides (Böhm et al., 2012, b).

5.2.2 The reconstruction method of the time series

The tide term amplitudes obtained in the first method can be constituted to equation (2.28)

along with the appropriate fundamental arguments to define modeled time series. These time

series can be considered as ''perfect'' to the extent that only modeled variations are included, and

consequently any noises and unrecognized systematics relative to the original time series have no

impact. With respect to the method of building, these time series are referred to as reconstructed

time series.

Practically, the tide terms in Table B.1 excluding S1 tide were used to compose the recon-

structed time series to fit to the original ERP time series by means of the LSA similar to the first

approach. The differences∆Θ(t j) between the original and reconstructed time series at observed

epoch t j include the S1 signal and inherit the noise and possible systematic effects from the orig-

inal time series. These time series ∆Θ(t j) are used to estimate the S1 tide only, adopting the

74



5. Detection of the atmospheric tides

stochastic model from the first method. In this case, standard deviations (σ ≈ 2.1 µas) of the

polar motion coefficients at the S1 frequency are almost equaled to the values of the first approach

(Table B.1). Also, the statistical assessment in dUT1 is on the same level as in the standard ap-

proach.

In Figure 5.3 a change due to application of the second method can be seen within the 1σ

level in polar motion. Since the same stochastic model is introduced this variation might not be

significant. The advantage of this separation is the parametrization of the LSA, which contains

only S1 frequency and six zero tides. The closely located frequencies, the P1, S1 and K1 triplet,

thus, are divided between the reconstructed and original time series. This evaluation using two

time series might prevent leakage of the signal from estimated frequencies, which one might

expect based on the correlation matrix in Figure 5.4. In the current case, the potential for leakage

is enhanced by the fact that the P1 and K1 are major tides and their amplitudes are approximately

5 and 15 times larger than the S1 tide amplitude measured in polar motion. By this reason, the

reconstructed time series is practicable method to focus on the subject of the interest, namely the

S1 tide. In dUT1 this approach is less efficient, yet the obtained estimate of the S1 tide is valid.

Besides the LSA method to retrieve the S1 tide, a window spectral analysis is worth being

applied. The advantage of this method is its ability to detect irregular effects of atmospheric tides

over different time spans, thereby giving clues about the instability on inter-seasonal and seasonal

frequencies or even shorter. Thus, anomalies estimates from the VLBI analysis can be compared

to results from geophysical modeling. For instance, weather phenomena such as El Niño and La

Niña are recognized in atmospheric pressure fields and modulate tides to a considerable degree

(Schindelegger et al., 2017). Due to small amplitude variations and unequidistant samples in the

obtained time series, a real detection of these events by means of the LSA is questionable and

corrupted by large formal errors. Currently, it is concluded that the VLBI observations cannot be

used to measure these events.

5.2.3 The stacked time series

The last method of the LSA implemented for evaluation of the S1 tide only is a stacking ap-

proach. In this third method, the hourly ERP residual time series can be mapped to the S1 tide

cycle of exactly 24 hours duration by stacking values to a mean day composite of exactly 24 points

{Θk}
23h

k=0h for each of ERP components labeled as Θ. The stacking by aid of a weighted average

for each integer hour k with corresponding time stamps tl (a subset of observed time moments

t j) is expressed as

{Θk}
23h

k=0h =
Nk
∑

l=1
∆Θ(t l)pl/

Nk
∑

l=1
pl , pl =

1
σ2(∆Θ(t l ))

, (5.17)

where σ(∆Θ(t l)) is the formal error at epoch tl in the original time series and Nk denotes

the total count of ERP residuals ∆Θ(t l) used in the averaging at each hour. As an example, the

stacked x- and y-components of polar motion are shown in Figures 5.6 and 5.7.
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Figure 5.7: The stacked time series of y

Finally, the diurnal harmonics, a 24-hour trend, and a mean value are adjusted to the stacked

composites. The obtained sinusoids with hourly sampling are then repeated to simulate the

S1 series of several years duration. These time series are processed by means of the LSA with

parametrization matrix which includes the S1 tide only. The total S1 amplitudes obtained thereof

can be found (Figure 5.3) to suggest a smaller amplitude than the first and second methods. Simi-

lar to the differences between these first two methods, the third solution possesses an insignificant

discrepancy on the formal error level.

Even though the results among these methods are rather similar, the third method is excep-

tional because its analysis revealed an interesting detail on the technical issue of VLBI schedules.

In addition to network geometry which is calculated for observations, the hourly interval within

the stacking approach supports a statistical count of parameter number of each epoch over the

VLBI data set. This observation count demonstrates a decrease in the number of ERP residuals at

around 19 hour of Coordinated Universal Time (UTC), cf. Figure 5.5. This loss of observations

occurs presumably, when some of the stations take a break from regular sessions to participate

in 1-hour intensive sessions from 18 UTC to 19 UTC (Behrend, 2013; Vandenberg, 1999a). For

both, complete and reduced data sets, this fall in the number of VLBI observations represents

approximately the same value.

5.2.4 The validation of the obtained empirical model

Empirical ocean tide models can be deduced in a stand-alone VLBI analysis (Gipson, 1996;

Böhm et al., 2012, b; Artz et al., 2011) or in a combined solution of VLBI and GPS (Artz et al.,

2012). The current empirical solution is another solution purely based on VLBI observations.

This newly-built model obtained by means of the first (standard) method of the TSA is vali-

dated using eight major tide term amplitudes (Figure 5.8) against the set of VLBI-based models

provided by Artz et al. (2011), Böhm et al. (2012, b) and Gipson (1996, personal communica-
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Figure 5.8: Previous VLBI-based solutions are compared against this thesis's results. The amplitude-
normalized RMS differences for eight major ocean tides observed in polar motion are on the left side
and dUT1 on the right. In polar motion unfilled squares indicate retrograde components of the semidiur-
nal tides. In polar motion the amplitude normalized RMS for S2 tide attains 37.5% (off scale) with the
solution by J. Gipson (2015).

tion, 2015). To quantify the resemblance between these models and the current solution, the

amplitude-normalized root mean square (RMS) difference is used in percentage:

∆RMSi =
s

(|A+i |−|Â
+
i |)2+(|B

+
i |−|B̂

+
i |)2

(Â+i )
2+(B̂+i )

2 · 100%, (5.18)

where the compared model data are marked by Â+i , B̂+i , which coefficients are parameterized

as given in equation (5.11) per tide term i. The amplitude-normalized RMS differences for the

retrograde polar motion are calculated by equation (5.18) only for the four semidiurnal tides

marked with unfilled squares (Figure 5.8). The devised algorithm evaluates simultaneously the

diurnal band of the retrograde polar motion, and while the other models usually set these terms

to zero to satisfy the Conventions requirement, there cannot be any crosscheck. In this thesis the

amplitudes at those frequencies are assumed to exhibit no signals (Table B.1), because these val-

ues are under 3σ level and below the noise threshold. Consequently, the conventional separation

of these signals by the virtue of CIP definition is introduced correctly.

Among these eight major tides, the largest amplitude of the principal lunar M2 tide in the

semidiurnal band and O1, P1 and K1 tides in the diurnal band show a smaller scattering of values

per constituent (Figure 5.8) comparably to the smaller amplitudes of the Q1 and K2 tides. A

disagreement with these general trend can be recognized for the principal lunar semidiurnal M2

tide in dUT1. The N2 tide shows similar discrepancies in percentage, because this wave is smaller

than the M2 tide, it gives a rise to larger amplitude-normalized RMS differences in the prograde

polar motion and dUT1. Another major tide in the same band is the principal solar S2 tide, for
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Figure 5.9: The prograde polar motion is shown for eight major tides from previous VLBI-based solutions
(upper panel) and solutions based on the updated ocean model by Desai & Sibois (2016), the old model
introduced in the IERS Conventional model (IERS Conv.) and the combined solution by Artz et al.(2012).
Corresponding data from the first method of TSA and global solution in this work are added to both plots.
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Figure 5.10: The retrograde polar motion is shown as in Figure 5.9.
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Figure 5.11: The dUT1 tide terms are shown as in Figure 5.9.
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which the dUT1 result from J. Gipson's solution deviates insignificantly from the other solutions.

In the prograde polar motion, however, the range of RMS differences for the S2 tide is the widest

(37.5%) based on the model by Gipson (1996), while values in the retrograde band are extremely

close. In contrast, the remarkably small RMS differences among values of all models can be seen

for other constituents in the semidiurnal retrograde band. An exception is found at the combined

lunar-solar K2 tide, which is similar to the N2 or Q1 tide case (smaller amplitudes), but with a

wider RMS scatter.

The good agreement of the current evaluation with results from Böhm et al. (2012, b) are

mainly evident in the semidiurnal band of dUT1 in Figure 5.8 possibly owing to the usage of the

same VLBI software VieVS (Böhm et al., 2012, a), while the solution by J. Gipson is obtained by

a rather different package (Calc/Solve, https://lupus.gsfc.nasa.gov/software_calc_
solve.htm). In fact, recent research on this topic of the software error propagation (Minttu

et al., 2016) reports small but for some cases critical statistical estimates. Specially, the weighted

mean difference over 24 hour VLBI sessions were found on the level of -1.66 µs with a weighted

root mean square (WRMS) scatter of 5.46 µs in UT1. At the same time, the largest obtained

discrepancy in dUT1 (≈10%) of the Artz et al. (2011) and Gipson (1996) models with Böhm

et al. (2012, b) solution is approximately 1.5µs, thus variations of the amplitude-normalized

RMS differences among solutions on this level are supposed to be insignificant. A complementary

comparison for polar motion is unavailable, but a similar error propagation might be assumed.

Overall, this comparison in Figure 5.8 indicates that the current assessment for the ocean tide

terms is somewhat in between the models of Gipson (1996), Böhm et al. (2012, b) and Artz et al.

(2011).

5.2.5 The S1 tide in Earth Rotation

In this particular study the commonly accepted high-frequency IERS Conventional model (Pe-

tit & Luzum, 2010) is utilized as a reference for a new empirical tide model. This model was de-

rived by an assimilation method (Egbert et al., 1994) based on the analysis of the TOPEX/Poseidon

global tidal model (TPXO) version 2 of satellite altimetry measurements and the ocean tidal an-

gular momentum extended in the Arctic region (Ray et al., 1997). The routines were built to

produce the coefficients of the corresponding tidal terms (Model C) as presented by Chao et al.

(1996). Eight major tide terms were shown to explain 60% of tide impact in polar motion vari-

ations derived from observations during Continuous VLBI (CONT)94 (VLBI campaign). For the

tide tables in the IERS Conventions these routines and tide terms were provided by Eanes (Pe-

tit & Luzum, 2010). The tabulations at the S1 frequency contain no atmospheric contribution, but

a small gravitational part (Section 2.2.3), so that, when this model is introduced in the reductions,

the correction obtained by means of TSA represents the atmospheric part explicitly.

An updated altimeter-dependent model (Egbert & Erofeeva, 2002, TPXO8) was implemented

in a recent prediction model for diurnal and semidiurnal tides in the ERP (Desai & Sibois, 2016).

The tide terms (Figure 5.9, 5.10, 5.11) were evaluated against GPS observations, where radi-
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ational tides being not considered. In fact, the model by Desai & Sibois (2016) comes with a

gravitational part at S1 frequency (Figure 5.12 and 5.13). Similarly, Madzak et al. (2016) used

satellite altimetry observations of ocean tides to improve the current IERS Conventional model.

In particular, the S2 tide exhibits a good agreement between model and ERP observations be-

cause altimeter data contain the combined effect of the ocean tide and ocean response at this

frequency to the atmospheric forcing. The S1 tide is still set to gravitational part only (Madzak

et al., 2016). Another empirical model (Artz et al., 2012), which includes the GPS observations

(Figure 5.9, 5.10, 5.11), confirms the recognized discrepancies in the diurnal band. This com-

bined solution (Artz et al., 2012) involves VLBI observations on the normal equation level in order

to reduce the deficiency in the diurnal band. As result, the ERP tide terms model of this solution

is close to that of Artz et al. (2011), however, estimates for the atmospheric tide appear to be even

less accurate (Figure 5.12 and 5.13).

In view of the mismodeling of the atmospheric tides seen in the above studies, this thesis

was devoted to the VLBI method advance. The first method of analyzing the high-frequency

ERP time series have provided accurate results for the major ocean tides (Figure 5.8). Based

on their reliability, the atmospheric S1 tide was evaluated in the the second and third methods.

The results displayed in Figure 5.3 exhibit a particularly close agreement for the first and the

second method of TSA. The stacking approach results in a reduction of A+ from 10 µas (in the

standard approach) to 8.0 µas—a change that is only in a slight excess of the onefold standard

deviation of any solution. Test calculations have shown that this small reduction arises from the

inclusion of a 24-hour trend component in the fit of the stacked x and y components which has no

analogue in the other TSA solutions. Such a trend over the duration of each session might have

a physical explanation or not; nevertheless, the dependence of S1 estimates on small details in

the post-processing is illustrated. More general, it is not possible to identify one approach being

''better'' or more feasible than the others, thus the values of the third method of TSA are chosen

to represent the assessment of the atmospheric S1 tide in this work (Figure 5.12 and 5.13).

In this analysis the associated standard deviations σ as provided by stochastic modeling in

equation (5.15) were found to vary barely across the set of coefficients A+, B+, A−, B− for each

tide. The corresponding standard deviations are tabulated as tide-specific averages (Tables B.1

and B.3). The accepted 3 σ level is 6 µas throughout and consistent with the largest zero tides

(4 µas) that serve as separate measurements for the solution noise level. All retrograde diurnal

polar motion coefficients fall below this threshold, suggesting that the signal content in this fre-

quency band has been correctly attributed to nutation and the post-processing does not produce

questionable signals in the retrograde band. For the S1 in polar motion, both tide components

(A+ and B+ ≈ 8 µas) are significantly above the noise level, yet these estimates might still be af-

fected by some systematic errors, e.g., due to various problems at individual stations or an uneven

distribution of observations over the course of a 24 hour session and the entire time span. In an

attempt to mitigate these influences and explore the stability of the S1 results, other time series

analysis strategies were tested.

In addition to the presented three methods of TSA, the global solution was applied to the same
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Figure 5.12: The atmospheric S1 amplitudes in polar motion are obtained from VLBI analysis (Gipson
(2015), Artz et al. (2011), Böhm et al. (2012)), the third method of TSA and global solution in this work,
and the combined solution based on the VLBI and GPS observations (Artz et al. (2012)). The gravitational
S1 amplitudes in polar motion are provided by the IERS Conventions (2010) and Desai & Sibois (2016).

data set. The global solution for evaluation of tide terms is based on the principle of complex

demodulation introduced by Böhm et al. (2012, b) and also implemented in VieVS (Böhm et al.,

2012, a). The results of this global adjustment are found to be in a good agreement with the
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Figure 5.13: The atmospheric S1 amplitudes in dUT1 are shown as in Figure 5.12.

estimates from third method of TSA in polar motion within 1 ÷ 2 σ level and under 3 σ level in

dUT1 (Figures 5.12 and 5.13). The Table B.3 contains the full data set of estimated tide terms

in global solution as recommended by IERS Conventions, which is similar for the first method of

the TSA in Table B.1. These two solutions performed in the global adjustment and standard TSA

demonstrate a good agreement as it can be expected for the same data set and software.

Overall, the obtained results confirm the recognized discrepancy at the S1 frequency between
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the geodetic estimates (both VLBI-based solutions and combined solution with GPS) and geo-

physical models (Figure 5.12 and 5.13) in terms of the the polar motion (Girdiuk et al., 2016a).

The previous VLBI-based results in Figures 5.12 and 5.13 display the combined effect of the grav-

itational S1 part, the radiational S1 tide and hydrodynamic ocean response to the atmospheric

forcing. The gravitational part can be easily subtracted by introducing corresponding signal in

the time series variations, and the obtained results in this work, thus, represent the sum of the

radiational part and the ocean response at the S1 frequency. An independent estimate of the

S1 tide in polar motion was deduced by Schindelegger et al. (2017) from the atmospheric and

oceanic angular momentum series. The amplitude depicted in Figure 5.12 is an average value

based on computations from three modern atmospheric reanalyses (see for details Schindelegger

et al., 2017). The atmospheric S1 tide from global adjustment is the closest value (within 5 µas)

to this geophysical estimate. The S1 perturbations in LOD were computed in a different approach

by means of torque quantities and ocean angular momentum (Schindelegger et al., 2017). These

estimates exhibit a good agreement with VLBI-based results, especially with Artz et al. (2011)

and the third method of TSA. The VLBI-based estimates still disagree with geophysical model val-

ues (Schindelegger et al., 2017), because the deviations between these solutions are more than

3 σ ≈ 6µas in polar motion and 3 σ ≈ 0.3µs in dUT1 of formal errors, which supplies VLBI

estimates. In comparison with previous assessment of the atmospheric tides from VLBI analysis

(10 µas in polar motion, Girdiuk et al., 2016b) the discrepancy was reduced to 5 µas.

5.3 Station positions time series analysis

The atmospheric tides in the hourly station position time series (Section 4.3.3) can be esti-

mated by the LSA in the same manner as tide variations in the high-frequency ERP time series.

The major difference is the parametrization matrix A, which in case of the station position anal-

ysis needs to include only the radiational S1 and S2 tides of the frequencies ν1,2 = 1, 2 cpd as

expressed by arguments

αi = νi · t +ϕi , i ∈ (1 : 2), (5.19)

where phase lag is not introduced ϕ1,2 = 0. To evaluate atmospheric tides in station positions

the corresponding modeled values were not added in the reductions. Thus, effects of atmospheric

tides are included in the residuals of the hourly station position time series obtained from the

single session solution. In fact, this approach deals with three time series of station positions in

rectangular coordinates (X,Y,Z), which are transformed to (R,E,N) system to report atmospheric

tides in format of cos- and sin-components of total amplitudes similar to the numerical models

(see Section 3). With respect to the main intention (Section 4.3.3) to evaluate the atmospheric

contribution, this approach examines the S1 tide. An estimate at the S2 frequency can not be

related entirely to the atmospheric tide (see Section 4.3.2). Any mismodeling in the ocean loading
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Solution Atmospheric loading Ocean loading Delay model Parametrization

1 - + VMF1 gradients estimated
2 - + VMF1 gradients fixed
3 - + Ray-tracing gradients estimated
4 - + Ray-tracing gradients fixed

Table 5.2: The differences in the reductions and the parametrization of the single session solutions are
applied for the study of atmospheric effects in the harmonic variations of the station positions. Symbols ''-''
indicates that the atmospheric tidal loading is not included in the reductions, ''+'' signifies that the ocean
tidal loading is introduced (FES2012 (MLP) model).

can be seen and misinterpreted therein as atmospheric part when the corresponding model is

taken into account in reductions.

Since the recommended reduction for the tidal ocean loading FES2004 does not take into

account the ocean response to the atmospheric forcing at the S1 frequency, the updated version

FES2012 (MLP) of the ocean model (Petrov, 2015) is implemented in the current analysis. Be-

sides, an effort to assess this small response is undertaken. In accordance with this purpose, VLBI

analyses are performed with the inclusion of the atmospheric tidal loading and exclusion of the

ocean tidal loading. Equation (5.19) used for the evaluation of the eight major tide terms and

S1 tide in variations of the harmonic station positions demonstrates reliable assessment. Yet, the

particular S1 frequency requires a detailed discussion.

5.3.1 Atmospheric tides in harmonic variations of station positions

As discussed in Section 4.3.3 on the one hand, model values provided by TU Wien and GSFC

represent an account for the atmospheric tidal loading and reveal a reasonable agreement for the

amplitude and phase at the chosen stations (Figure 5.14). On the other hand, atmospheric tides

computed for two stations, Katherine and Westford, are compared against numerical models (Fig-

ure 5.14). The differences among the estimated components exhibit an insignificant amplitude

scatter (under 3 σ level). Their phases indicate the moment of the atmospheric tidal loading

maximum, and a typical phase lead is 8 hours for Katherine and 6 hours for Westford. Since

the empirical approach deals with the observed variations, which are overwhelmed by a number

of deficiencies similar to the ERP time series, the phase is unavoidable issue. And, because all

obtained amplitudes are less than the 3 σ level for Katherine or close to this level, this assess-

ment can not be reliable entirely for this particular station. In this case, the phase problem is not

decisive issue. In contrast to Katherine, significant amplitudes are detected for Westford. The

station Westford was chosen to accomplish the atmospheric tidal loading study; however these

exaggerated results (Figure 5.14) find a different argument.

The physics of daily insolation can be suspected to be involved in the miscalculation at the S1

frequency. Because the physical processes of heating can contaminate measurements significantly

(Ray & Egbert, 2004) it is an unavoidable problem, especially, when atmospheric tides are the

subject of evaluation. In the VLBI analysis, this process is taken into account by thermal antenna
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Figure 5.14: Atmospheric S1 tide is retrieved in radial component variations of station positions for Kather-
ine (on the left side) and Westford (on the right side) as obtained from single session solutions (Table 5.2).
The basic set of reductions includes the high-frequency Conventional model. The total amplitudes are rep-
resented by cos- and sin-components. The solutions, in which ray-traced delays are applied, are marked
with squares, VMF1 with circles, pink color denote solutions where gradients are fixed, blue where gradi-
ents are estimated. The 1 σ level of standard deviations is depicted on both planes as circle of pink color,
2 σ of orange color, 3 σ of green color. The phase reference is Greenwich midnight (0 UTC).

deformation in the reductions. To explore the sensitivity to this effect, the solutions, in which the

thermal antenna deformation model is discarded, were undertaken (Figure 5.15). With respect to

Figure 5.14 the total amplitudes deviate by 0.2-0.7 mm at station Westford. The phase scatter of

these solutions is about 4 hours for Katherine and 2 hours for Westford. A less disturbed scatter at

the station Westford can be also explained by the fact that antenna 18.3 m in diameter in Westford

has a 28 m radome to protect the dish from the environment. In view of the small size of the

Katherine dish (12 m) the deformations are expected to be smaller and better predicted, thus this

antenna is supposed to have no need for the radome. Yet, this wide scatter might indicate an

influence of nonlinear effects of the dish.

The station position estimates by means of the single session solution can be improved by the

data set expanding. Further observations provided in intensive scheduling (as it had been done

during last couple years until the current moment for Katherine) should advance these results. For

instance, the consideration of the second example station Westford can justify a better accuracy

in terms of standard deviations. The 1 σ standard deviation is approximately on 40 % smaller

for station Westford than for station Katherine. This difference mostly can be traced back to the

86



5. Detection of the atmospheric tides

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

TUW
GSFC 0 UTC

cos, mm

si
n,

m
m

Katherine

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

TUW

GSFC 0 UTC

cos, mm
si

n,
m

m

Westford

gradients estimated, VMF1 gradients fixed, VMF1
gradients estimated, ray tracing gradients fixed, ray tracing

Figure 5.15: Atmospheric S1 tide is shown as in Figure 5.14 but disregarding the thermal antenna defor-
mation.

Ratio Westford, % Katherine, % absolute values Westford, mm Katherine, mm

S1
P1

62 49 P1 1.5 1.9
S1
K1

19 16 K1 5.0 5.9

Table 5.3: Relative and absolute S1 tidal term amplitudes with respect to the P1 and K1 tides for stations
Westford and Katherine as provided by FES2012 (MLP).

length of time series for station Westford, which is about 20 years long in comparison with 5

years for Katherine. Katherine was built as a part of Australian network about 10 years ago,

and it is a relatively new station in the VLBI network. In contrast to Katherine, the first radio

observations at Westford were started in 1962, joining the VLBI network in 1981. Hence, this

station is more reliable in terms of stability defined for ground-based observatories due to the

length of continuous observations.

The total amplitude estimates at station Westford for all solutions in Figure 5.14 disclose

a sizable discrepancy with atmospheric model values. Given the data set reliability for station

Westford, this problem cannot be explained in a straight-forward manner, because the analysis of

the time series at the station Westford was expected to reveal no signal. These obtained variations
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Figure 5.16: Atmospheric S1 tide is shown as in Figure 5.14 but the high-frequency conventional model
replaced by the model of Madzak et al. (2016).

can arise from the applied method of the LSA at the predefined frequencies because of possible

leakage from side lobes. The closest frequencies containing the larger ocean loading tides P1

and K1 can corrupt the atmospheric loading S1 signal, and thus the results in Figure 5.14 might

present this complex effect instead of the tidal loading amplitude at the S1 frequency. The ratio

of modeled amplitudes for these tides are collected in Table 5.3, where the same tidal amplitudes

for the station Katherine are shown for the comparison. Moreover, the signal measured at the

S1 frequency represents a complicated combination by itself consisted of the gravitational part,

radiational tide and hydrodynamic ocean response to the atmospheric forcing. The gravitationally

induced S1 constituent is a product of the P1 and K1 side lobes as derived from the tide generating

potential (TGP). This tide is not included in the current set of reductions since models neglect its

small impact. In fact, the obtained estimates in Figure 5.14 demonstrate the total effect of the

atmospheric S1 tide composed by the radiational part and hydrodynamic ocean response.

To further test the obtained station position variations, two types of models described in the

Section 4.3.3, the ray-tracing and standard approach (VMF1) were varied. As follows, four com-

binations were generated (Table 5.2), where gradients are fixed to the a priori values in the single

session solution parametrization and where gradient estimates are included in the parametriza-

tion matrix as usual. A possible improvement of the assessment by means of ray-traced delays

and gradients fixed to this a priori model was expected. The insignificant deviations between
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5. Detection of the atmospheric tides

Solution Atmospheric loading Ocean loading Delay model Parametrization

1 + - VMF1 gradients estimated
2 + - VMF1 gradients fixed
3 + - Ray-tracing gradients estimated
4 + - Ray-tracing gradients fixed

Table 5.4: The differences in the reductions and the parametrization of the single session solutions are
applied for the study of atmospheric effects in the harmonic variations of the station positions. Symbols
''+'' indicates that the atmospheric tidal loading is not included in the reductions (TU Wien model), ''-''
signifies that the ocean tidal loading is not introduced

these solutions, however, cannot point to any of these strategies as more reliable.

The dependence on the high-frequency ocean model is explored by changing the a priori high-

frequency tide model in the reductions. For this purpose, the recently developed model by Madzak

et al. (2016) is chosen because this updated solution is based on modern ocean model. Still the

obtained estimates of the S1 tide in Figure 5.16 exhibit no statistically significant deviations. A

similar dependence was investigated by changing the underlying ocean and atmospheric loadings

(Section 4.3.2) to find any deviations in the obtained high-frequency tide terms (Girdiuk et al.,

2016a). In overall, both methods to study these dependencies are not able to provide definitive

conclusions, thus underlining a possible limitation of the VLBI method.

5.3.2 Ocean tides in harmonic variations of station positions

The importance of the daily and sub-daily oceanic impact was already presented in the Sec-

tion 4.3.2 for the joint analysis of the atmospheric tides. The atmospheric tidal term analysis in

harmonic variations of station positions indicated a possibility to assess this kind of variations.

The main problematic issues of this approach are small amplitudes at the chosen frequency (S1)

and the leakage effect of the major ocean tides alongside (P1 and K1). Since S1 tide leads to an

ambiguous assessment, the reliability of the presented estimation approach needs to be exempli-

fied by inspecting other tidal terms. The major ocean tides P1 and K1, which tower above in the

diurnal band, are suited for this evaluation.

The same approach of the LSA at pre-defined tidal frequencies introduced in the previous

section is extended by the eight ocean tides i ∈ (1 : 8) modeled in accordance with their frequen-

cies νi and phases ϕi of the equilibrium tide (HW95 catalogue) based on Doodson numbers (see

Appendix A):

αi = νi · t +ϕi , i ∈ (1 : 9), (5.20)

where i = 9 is for the radiational S1 part.

To deduce ocean tides in the variations of the station positions from the single session solution

of the same sessions (as for atmospheric tidal loading analysis), the set of implemented reductions
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Figure 5.17: Ocean response to the atmospheric forcing of S1 frequency is retrieved in radial component
variations of station positions (Katherine and Westford, also see Table 5.4). The basic set of reductions
includes the high-frequency Conventional model. The total amplitudes are represented by cos- and sin-
components. The solutions, in which ray-traced delays are applied, are marked with squares, VMF1 with
circles, pink color denote solutions where gradients are fixed, blue where gradients are estimated. The
1 σ level of standard deviations is depicted on both planes as circle of pink color, 2 σ of orange color, 3 σ
of green color. The phase reference is Greenwich midnight (0 UTC). MLP signifies FES2012 ocean model
provided by Petrov (2015).

needs to be modified appropriately (Table 5.4). The complete set of 11 ocean tides, which is the

recommended standard by the IERS Convention to apply, is eliminated entirely for the station

Katherine (or Westford) only. The current study can be exempted from three long-term tides

because their account is expected to be irrelevant in the diurnal and semidiurnal bands.

Concerning the S1 tide in this thesis, the atmospheric contribution is taken into account in

the reductions at the single session solution (Table 5.4), so the signal at the S1 frequency should

contain the ocean response to the atmospheric forcing. The results of the LSA are depicted in

Figure 5.17, in which the methods for treating the tropospheric impact were varied. The ampli-

tude scatter shows a close similarity with the results of the atmospheric tides (Figure 5.14). Any

deviations between particular solutions (fixed gradients to the ray-traced delays) can not be con-

sidered as reliable because these values are within 3 σ level. The discrepancies of estimated and

modeled values are sizable for Katherine and, especially, for Westford (Figure 5.17). The model

value marked as MLP stems from the calculations of corrections to the station positions by Petrov

(2015) for FES2012 model. At S1 frequency, Petrov (2015) introduces a 90◦ phase lag. To be con-

90



5. Detection of the atmospheric tides

L
o
a
d
S
1
ti
d
e
p
h
a
se
,
d
eg
re
e

-1
5
0

-1
0
0

-5
0

0
5
0

1
0
0

1
5
0

L
o
n
g
it
u
d
e

-5
00

5
0

-5
00

5
0

-5
00

5
0

Latitude

6
0

1
2
0

1
8
0

2
4
0

3
0
0

Figure 5.18: The phase lags (degree) for the load tide associated with the ocean response at the S1 fre-
quency as provided by FES2014 ocean model is shown.
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Figure 5.19: P1 ocean tide is shown as in Figure 5.17. CUS stands for FES2012 ocean model provided by
Bos & Scherneck (2007).

sistent with this model values, the same phase lag was added to the argument at the S1 frequency

in the current parametrization in Figure 5.17. A close agreement by phase can be seen for the

results at Katherine (Figure 5.17), which is still broader than for Westford. This service (Petrov,

2015) is only one which provides S1 tide for operational analysis, thus for the comparison the

load tide at the S1 frequency is represented in Figure 4.11 by the FES2014b model (Lyard et al.,

2014). The amplitude of the S1 from the FES2014b model is rather similar to the MLP value. The

phase in Figure 5.18, which demonstrates the phase of S1 tide provided by the FES2014b model,

mirrors values for Katherine (≈ 180◦) and Westford (≈ 0◦).

The station position variations at the frequencies of the P1 and the K1 tides are illustrated

in Figures 5.19 and 5.20 correspondingly. The modeled values for these major tides are taken

for two providers of the station corrections (CUS by Bos & Scherneck (2007) and MLP by Petrov

(2015)) derived from the same ocean model (FES2012, Lyard et al., 2006). The amplitudes show

a reasonable agreement with both model values (MLP and CUS). These obtained estimates deviate

within 1 mm from each other, which might serve as an explanation for the discrepancy registered

at the station Westford in the analysis of the atmospheric S1 tide. The phase discrepancy between

particular solution up to 3 hours is acceptable since the scattering of the obtained solutions is

less broad than the difference between model values of two providers. The set of four solutions

(Table 5.4) is shown in each plot, where no specific solution can be noticed because the two
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Figure 5.20: K1 ocean tide is shown as in Figure 5.19.

model values deviate significantly. However, the remarkable agreement among these four VLBI

solutions is evident.
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Chapter 6

Conclusion

In recent years geodetic VLBI analysis has made progress to detect the smallest tide signals

in the high-frequency Earth's rotation variations. The thesis's emphasis has been placed on the

recognized anomalies in the high-frequency band, namely the atmospheric S1 tide. Unlike the

major ocean tides, which are forced by the lunar-solar gravitation potential, the excitation source

of radiational tides is continuous insolation of the atmosphere. Besides the effect of direct solar

heating, the atmosphere incites motions in the oceans at the same frequencies. This hydrodynamic

response to the atmospheric forcing can be estimated by the use of ocean model with atmospheric

forcing on its surface, where the ocean angular momentum may be computed consistently with

the atmospheric angular momentum. Corresponding regular variations occur in the diurnal and

semidiurnal bands of the polar motion and LOD with periods of 24 hours (S1) and 12 hours (S2).

These geophysical model estimates can be compared by a high-frequency empirical model derived

from geodetic VLBI analysis, sensing tides as the combination of the atmospheric variations and

the hydrodynamic response to the atmospheric forcing with the gravitational tides taken into

account in the applied reductions. Contrary to S1, the semidiurnal atmospheric S2 tide cannot be

evaluated by the geodetic methods yet, mainly owing to the strong gravitational forcing at this

frequency and possible mismodeling in the separation of the different excitation sources.

Determination of the atmospheric tide effects in Earth's rotation may be intrinsically linked

to the station displacement variations at the very same frequencies. Atmosphere and oceans en-

velope the Earth and, thus, contribute to the variations of the Earth's body shape directly. The

geodetic VLBI stations located on the crust undergo the corresponding tidal loading deformations,

which have been independently estimated in this thesis to study the impact of these atmospheric

and ocean tidal loading models. Despite all efforts, the obtained variations were found insuffi-

cient to draw a definitive picture of tidal loading model performances mainly due to the existing

limitation of the VLBI analysis in the determination of both the high-frequency tide terms and

station positions.

The last 20 years of VLBI observations (1995-2015) were sifted, reviewed and reprocessed

to facilitate the computation of the atmospheric S1 tide estimates in the high-frequency Earth's

rotation and the station positions. Half of the available VLBI data were removed in this revision
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without a recession of the high-frequency tide term accuracy in comparison to the last similar

evaluation by Böhm (2012). A stacking of the VLBI single session solutions is used to compose

the time series of the high-frequency ERP as well as station position estimates. The obtained

length of the time series is considered appropriate for an accurate evaluation of the smallest

tides, because the long-term modulations are represented by at least one full period, except for the

argument of period 20 940 years included at the S1 tide. Since this constituent can be obtained

from independent models, the gravitational S1 account is assumed to be subtracted correctly.

The radiational S1 tide follows the Sun, thus the assembled ERP and station position time series

include an acceptable number of approximately 20 years (5 years for Katherine only).

6.1 The atmospheric S1 tide in the high-frequency ERP time series

The obtained high-frequency ERP time series variations are considerably accurate for purposes

of small tide determination. The fitted empirical model was found to be in the good agreement

with the previous VLBI solutions (Gipson, 1996; Artz et al., 2011; Böhm et al., 2012, b), a com-

bined solution of VLBI and GPS observations (Artz et al., 2012) as well as an altimetery-based

tide ERP model (Desai & Sibois, 2016). The noteworthy fact is that all these geodetic results in-

clude the gravitational S1 part and atmospheric S1 tide. The altimetry-dependent ocean models,

which also the high-frequency Conventional model, specify the amplitude at the S1 frequency by

the gravitational part only. In contrast, the current assessment implements the high-frequency

Conventional model in the reductions and reports finally the the atmospheric S1 tide amplitude.

As geophysical model values (Schindelegger et al., 2017) represent the atmospheric S1 tide, the

validation of the VLBI results is rigorous.

In this thesis, first of all, the ocean tide effects in the high-frequency ERP time series and their

reliability were assessed, and, secondly, based on the obtained ocean tide terms, the atmospheric

tides were pinpointed in the residuals at the corresponding frequencies. In the processing of the

high-frequency ERP time series the atmospheric S1 tide was evaluated by means of three meth-

ods of the time series approach. These methods were undertaken in order to reduce noises in

the available time series, yet differences among these estimates are on the one-fold level of the

standard deviations, which might not be significant. Additionally, the atmospheric S1 tide along

with the diurnal and semidiurnal tide terms was obtained in a global solution, which reduces the

time series imperfections by averaging over the whole observed time span. Still, the differences

between the S1 estimates from the global solution and the time series approaches are approxi-

mately on the threefold formal error level. The atmospheric S1 tide in polar motion obtained by

means of the global solution was shown to be closer to the corresponding estimate provided by

geophysical modeling (Schindelegger et al., 2017) than the values derived from the time series

approaches. And dUT1 estimates from the time series approaches were represented in a better

agreement with geophysical modeling (Schindelegger et al., 2017) than the global solution re-

sult. Specifically, the difference was reduced to 5 µas in polar motion, yet the retained deviation
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is still significant. Previously published high-frequency ERP models based on geodetic techniques

(Gipson, 1996; Artz et al., 2011; Böhm et al., 2012, b) achieved the discrepancies in polar mo-

tion in the order of 10 µas or larger (Girdiuk et al., 2016b), especially when the signal at the S1

frequency had not attributed correctly to the excitation source.

6.2 The diurnal and semidiurnal atmospheric tides in the station po-

sition variations

The station positions were evaluated using different sets of geophysical models in reductions

to allow for a distinction of the impact of applying atmospheric and ocean models. Implemen-

tation of the corresponding corrections instead of a loading-free solution demonstrates the sub-

stantial improvement of the geodetic station position estimates by means of the baseline length

repeatability. Yet, at the current stage of the geodetic VLBI observations, no distinction could be

made among particular atmospheric and ocean loading models regarding their reliability on the

longer time scales and daily and sub-daily periodicities.

A similar exploration was made in the supplementary study of the VLBI station position vari-

ations forced by the diurnal and semidiurnal atmospheric tides. The station position estimates

were processed to detect atmospheric signals at the pre-defined radiational frequencies. Also,

larger ocean tide signals were obtained by the same approach to confirm this assessment. The

undertaken analysis utilized a straight-forward estimation where tide terms are not constrained

unlike in previous efforts (Petrov & Ma, 2003). The comparison of the atmospheric tide am-

plitudes at particular VLBI stations, for instance, station Katherine, where the maximum of the

atmospheric field forcing is achieved, revealed amplitudes on the same level as those suggested

by numerical models. However, the threefold formal errors are still as large or larger than the

displacement signal, therefore limiting the reliability of this assessment and emphasizing that the

geodetic VLBI observations require a certain improvement.

6.3 Remark on the VLBI method

This thesis underlines certain limitations, in view of which the VLBI technique cannot serve as

the precise standalone method for evaluation of signals in the Earth system. The particular and

challenging test cases adopted in the present work are the atmospheric tide effects in the high-

frequency ERP time series and in the station position variations. At least the quality assessment

of these effects was accomplished, where the applied analysis for both time series is advanced

by the straight-forward manner. This manner does not necessitate any additional constraints and

incorporation of external geophysical models into the parameter limitation. The reliability of the

applied approaches is confirmed by the obtained ocean tide terms which are in good agreement

with other models in both time series, the high-frequency ERP and station position variations

Overall, the geodetic VLBI method is credited for the high accuracy of the IERS main products,
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that is, the terrestrial and celestial reference frame and EOP time series. Recently, the small

geophysical effects of ocean tides in the high-frequency ERP time series were determined on

the substantial formal error level (Böhm, 2012). The present thesis was intended to expend

this result by the accurate assessment of the even smaller geophysical effects associated with

the atmospheric tides. Achieving consistency with the geophysical model results (Schindelegger,

2014; Schindelegger et al., 2016, 2017) was a prime target. The most deterrent factor on the road

to precise parameter determination, as undertaken in the present analysis, is the formal error

level, even though the parameter estimates were obtained on the expected level from reference

studies. Thus, this thesis encourages future work, in particular, repeat of the analysis when longer

and more dense VLBI time series become available to improve the formal error level and reduce

uncertainties.
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Appendix A

Auxiliary calculations

Legendre polynomials

The central angle ψ between (~r,φ,λ) and ( ~r ′,δ,λ′) is defined (Beutler et al., 2006; Simon

et al., 2013) on the sphere as

cosψ= sinφ sinδ+ cosφ cosδ cos(λ−λ′). (A.1)

Analytical expression for Legendre polynomials (Hobson, 1931) to which angle ψ is substi-

tuted can be presented by the recursion formula (in which n can take value n¾ 1)

Pn+1(x) =
2n+ 1
n+ 1

x Pn(x)−
n

n+ 1
Pn−1(x), (A.2)

where first terms are

P0(x) = 1, P1(x) = x ,P2(x) =
1
2
(3 cos2 x − 1), for every x . (A.3)

Legendre polynomials Pn(cosψ) can be calculated using the Legendre addition theorem (Hob-

son, 1931)

Pn(cosψ) = Pn(sinφ)Pn(sinδ) + 2
n
∑

k=1

(n− k)!
(n+ k)!

Pk
n (sinφ)P

k
n (sinδ) cos[k(λ−λ′)] (A.4)

where Pk
n are the associated Legendre polynomials. Using spherical harmonics functions in-

stead of the Cartesian approach, one introduces Y k
n (φ,λ) for which the complex conjugation is

99



Figure A.1: Spherical harmonics: zonal, sectoral, tesseral.

defined as Y k ∗
n = (−1)nY k

n

Y k
n (φ,λ) =

√

√(2k+ 1)(n− k)!
4π(n+ k)!

Pk
n (cosφ)[Ank cos kλ+ Bnk sin kλ], (A.5)

Ank and Bnk are constant coefficients, so that Legendre polynomials Pn(cosψ) take into ac-

count cos[k(λ′ −λ)] = cos kλ cos kλ′ + sin kλ sin kλ′, leading to

VT GP =
GM

L

∞
∑

n=2

�R⊕

L

�

n 4π
2n+ 1

n
∑

k=−n

Y k
n (φ,λ)Y k ∗

n (φ
′,λ′). (A.6)

The Laplace spherical harmonics Y k
n (φ,λ) can be visualized in Figure A.1. Specially, the

graphical presentation of spherical harmonics reduces to finding the roots of Y k
n (φ,λ). Three

groups of solutions are defined as zonal, sectoral and tesseral harmonics (Hobson, 1931). Zonal

harmonics appear in case k = 0 and provide locus parallel to equator of the sphere. Sectoral

harmonics n = |k| divide the sphere into pieces from one pole to another. The last group are

tesseral harmonics on the sphere. A combination of the above-mentioned solutions, forming a

chess-board (Beutler et al., 2006).
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Lunar-solar fundamental arguments

Variables referred to the fundamental epoch of 2000, January 1, 12 h TDB as recommended

by (Petit & Luzum, 2010) at given time T read as follows

F1 = l = Mean anomaly of the Moon

= 134.96340251◦ + 1717915923.2178′′ t + 31.8792′′ t2+

+0.051635′′ t3 − 0.00024470′′ t4,

F2 = l ′ = Mean anomaly of the Sun

= 357.52910918◦ + 129596581.0481′′ t − 0.5532′′ t2+

+0.000136′′ t3 − 0.00001149′′ t4,

F3 = F = s− N =

= 93.27209062◦ + 1739527262.8478′′ t − 12.7512′′ t2−

−0.001037′′ t3 + 0.00000417′′ t4,

F4 = D = Mean Elongation of the Moon from the Sun

= 297.85019547◦ + 1602961601.2090′′ t − 6.3706′′ t2+

+0.006593′′ t3 − 0.00003169′′ t4,

F5 = Ω= N = Mean Longitude of the Ascending Node of the Moon

= 125.04455501◦ − 6962890.5431′′ t + 7.4722′′ t2+

+0.007702′′ t3 − 0.00005939′′ t4,

(A.7)

where the fundamental arguments F j are called the set of Delaunay variables.

The Delaunay variable need to be substituted as harmonics function argument ω by integer

numbers related as:

ω=
5
∑

i=1

Ni Fi . (A.8)

Doodson number

In the tidal catalogs the Doodson number appear to be positive values as listed in the table

A.1. These numbers are obtained by substitution

{d j}61 =











0

1

2











{mi}51 −{055555}, (A.9)
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Tide Multipliers Doodson Delaunay arguments
m1 m2 m3 m4 m5 number

Diurnal tides
Q1 1 -2 0 1 0 0 135.655 1 -1 0 -2 0 -2
O1 1 -1 0 0 0 0 145.555 1 0 0 -2 0 -2
P1 1 1 -2 0 0 0 163.555 1 0 0 -2 2 -2
K1 1 1 0 0 0 0 165.555 1 0 0 0 0 0
Lunar semidiurnal tides

N2 2 -1 0 1 0 0 245.655 2 -1 0 -2 0 -2
M2 2 0 0 0 0 0 255.555 2 0 0 -2 0 -2
S2 2 2 -2 0 0 0 273.555 2 0 0 -2 2 -2
K2 2 2 0 0 0 0 275.555 2 0 0 0 0 0

Table A.1: Doodson numbers.

where mi are multipliers for Doodson numbers. Values











0

1

2











mark zonal, diurnal and semidi-

urnal waves correspondingly. Therefore, frequencies at solar day (def. 360◦/ω� = 1) of potential

can be expressed

ωn = d1ω� + d2ṡ+ d3ḣ+ d4 ṗ+ d5Ṅ ′ + d6 ṗs, (A.10)

for instance, M2 or O1:

ωM2
= 2ω� − 2ṡ+ 2ḣ, ω01

=ω� − 2ṡ+ ḣ. (A.11)

Arguments can be calculated by means of Doodson or Delaunay arguments (GMST+π in-

cluded) consisted of 6 variables, j = 6, thus integer multipliers can be connected as

k j = T−1F j ⇐⇒ F j = T k j : T =





















0 0 0 −1 0 0

0 0 0 0 0 −1

−1 1 1 1 0 1

0 0 −1 0 0 −1

−1 1 1 1 −1 1

1 0 0 0 0 0





















(A.12)
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A. Auxiliary calculations

Note, that Doodson’s variables can be related to Delaunay arguments as

τ Greenwich lunar time= Sidereal time+ 180◦ − s,

s Mean longitude of the Moon= F + N ,

h Mean longitude of the Sun= s− D,

p Mean longitude of the lunar perigee= s− l,

N ′ = −N ,

ps Mean longitude of the solar perigee= s− D− l ′.

(A.13)

Angular Momentum Function

The position vector ~x and velocities ~v can be written in spherical coordinates for latitude ϕ

and longitude λ for the sphere of the Earth radius r:

~x = r







cosϕ cosλ

cosϕ sinλ

sinϕ






,

~v= ueE + veN +weR,

(A.14)

where velocities are given in local system for Radial (R), East (E) and North (N) components,

so that the angular momentum functions separated in the pressure (p) and wind term (w) can be

presented (Schindelegger et al., 2013):

χ̂ = χp +χw =
1.100Ω∆Î

C − A′

∫ ∫ ∫

ρr4 sinϕ cos2ϕeiλdλdϕdr+

+
1.608
(C − A′)Ω

∫ ∫ ∫

ρr3(u sinϕ + iv) cosϕeiϕdλdϕdr

χz = χ ′p +χ
′
w =

0.748IzzΩ

ΩCm

∫ ∫ ∫

ρr4 cos3ϕdλdϕdr+

+
0.997hz

ΩCm

∫ ∫ ∫

ρr3u cos2ϕdλdϕdr

(A.15)

where ρ is the density of the considered fluid.

Load tide

The surface deformations due to ocean loading can be expressend by means of infinite complex

Green functions G (θ ) and load Love numbers h′ and k′ (Scherneck, 1991)
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dr = G (θ )(h
′)dm=

∫ ∫

ζ
GρwR⊕

g
sinθdθdλ

∞
∑

n=0

h′nPn(cosθ ), (A.16)

dh = G (θ )(k
′)dm=

∫ ∫

ζ
GρwR⊕

g
sinθdθdλ

∞
∑

n=0

k′n
∂ Pn(cosθ )
∂ θ

,

where dr and dh are displacement in the radial and horizontal directions and the tidal eleva-

tions ζ are represented as harmonic functions in equation (2.28) and at practice introduced by the

global tide maps for the largest signals in the TGP. Usually, Green functions which are introduced

in equation (A.16) as an infinite sum over the spherical harmonics are provided by tables (Farrell,

1972) and θ specifies an angular distance from the given load to the chosen field point on the

surface (Farrell, 1972; Scherneck, 1991), thus in equation (A.16) the integration over the glob

should be done only. The typical displacement for M2 and O1 tides are illustrated in Figure A.2,

which are also called load tide to underline the fact of crust deformation.
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A. Auxiliary calculations

Load M2 tide, cm
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Load O1 tide, cm
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Figure A.2: Load M2 tide (top) and load O1 tide (bottom) calculated on the basis of a global tide map. The
radial displacement in cm.
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Appendix B

Auxiliary tables

Table B.1: Polar motion tidal terms estimated in this work in single session solution. Zero tides are included
to assess the time series noise level. The last columns list average of the specific standard deviations that
are representative of the formal errors of the individual coefficients {A+, B+, A−, B−}.

Period Delaunay argument A+ B+ A− B− σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas µas µas

days)

1.2114 1 -1 0 -2 -2 -2 -1.87 2.24 -1.50 -0.20 2.07 2.07

1.1671 1 -2 0 -2 0 -1 -4.56 -5.07 1.43 0.48 2.13 2.13

2Q1 1.1669 1 -2 0 -2 0 -2 -2.29 0.41 0.26 2.61 2.13 2.13

1.1605 1 0 0 -2 -2 -1 -0.18 -0.38 1.11 -0.50 2.13 2.13

σ1 1.1603 1 0 0 -2 -2 -2 -4.61 -0.19 -2.52 -2.65 2.12 2.12

1.1197 1 -1 0 -2 0 -1 -6.15 1.82 1.41 -0.86 2.12 2.12

Q1 1.1195 1 -1 0 -2 0 -2 -27.89 8.66 -3.48 -1.03 2.13 2.13

1.1136 1 1 0 -2 -2 -1 -1.45 -1.70 1.40 -2.09 2.13 2.13

RO1 1.1135 1 1 0 -2 -2 -2 -2.23 -0.44 -0.40 -0.21 2.13 2.13

1.0761 1 0 0 -2 0 0 0.72 0.61 0.25 -0.90 2.17 2.17

1.0760 1 0 0 -2 0 -1 -24.16 13.74 -2.28 -2.01 2.19 2.19

O1 1.0758 1 0 0 -2 0 -2 -129.09 59.28 -1.85 1.94 2.16 2.16

1.0751 1 -2 0 0 0 0 2.17 -1.77 -0.37 -2.98 2.11 2.11

T01 1.0695 1 0 0 0 -2 0 -0.41 -0.67 0.08 2.71 2.09 2.09

1.0406 1 -1 0 -2 2 -2 -2.25 2.87 -0.85 0.32 2.10 2.10

1.0355 1 1 0 -2 0 -1 2.49 2.09 0.13 -1.03 2.17 2.17

1.0354 1 1 0 -2 0 -2 -1.00 1.03 0.64 -2.08 2.15 2.16

M1 1.0347 1 -1 0 0 0 0 5.10 -2.00 0.12 0.97 2.15 2.15

1.0346 1 -1 0 0 0 -1 0.63 -1.80 0.45 -0.50 2.17 2.17

χ1 1.0295 1 1 0 0 -2 0 4.94 -1.11 -2.69 2.48 2.10 2.10

π1 1.0055 1 0 -1 -2 2 -2 -2.63 5.33 -0.66 0.14 2.11 2.11
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Table B.1: Polar motion tidal terms estimated in this work in single session solution. Zero tides are included
to assess the time series noise level. The last columns list average of the specific standard deviations that
are representative of the formal errors of the individual coefficients {A+, B+, A−, B−}.

Period Delaunay argument A+ B+ A− B− σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas µas µas

days)

1.0029 1 0 0 -2 2 -1 -0.58 -2.82 3.36 0.03 2.15 2.15

P1 1.0027 1 0 0 -2 2 -2 -49.08 25.62 -3.30 1.50 2.15 2.16

S1 1.0000 1 0 -1 0 0 0 9.19 9.59 -0.12 0.41 2.13 2.13

0.9974 1 0 0 0 0 1 1.35 -2.15 -0.73 -0.19 2.23 2.22

K1 0.9973 1 0 0 0 0 0 156.93 -98.40 0.82 -3.39 2.25 2.24

0.9971 1 0 0 0 0 -1 19.87 -12.23 -3.17 1.00 2.23 2.23

0.9970 1 0 0 0 0 -2 1.48 0.12 1.48 3.22 2.20 2.20

ψ1 0.9946 1 0 1 0 0 0 1.51 -0.40 2.07 0.89 2.12 2.11

ϕ1 0.9919 1 0 0 2 -2 2 5.43 4.79 -0.06 -0.10 2.11 2.11

TT1 0.9670 1 -1 0 0 2 0 0.53 -2.89 1.20 0.67 2.08 2.08

J1 0.9624 1 1 0 0 0 0 8.88 -7.23 1.09 2.21 2.12 2.13

0.9623 1 1 0 0 0 -1 2.09 2.05 1.14 -0.81 2.13 2.13

So1 0.9342 1 0 0 0 2 0 1.75 -2.26 0.35 2.66 2.09 2.09

0.9300 1 2 0 0 0 0 1.10 0.86 2.30 0.97 2.10 2.10

Oo1 0.9294 1 0 0 2 0 2 4.49 -5.02 1.91 1.83 2.15 2.16

0.9293 1 0 0 2 0 1 0.63 -4.36 2.33 -1.10 2.20 2.20

0.9292 1 0 0 2 0 0 1.60 -0.43 -1.10 2.51 2.17 2.17

ν1 0.8991 1 1 0 2 0 2 -3.76 -2.92 -2.49 3.05 2.14 2.14

0.8990 1 1 0 2 0 1 -0.75 -1.06 -0.34 3.26 2.12 2.12

zero 1.1065 1 1 0 0 -4 -1 -0.87 0.84 0.52 0.25 2.10 2.09

zero 1.0176 1 1 1 0 -2 -1 2.15 2.34 -1.03 -0.37 2.10 2.10

zero 0.9142 1 1 -1 0 2 0 -2.20 0.22 -0.70 -0.94 2.08 2.08

0.5484 2 -3 0 -2 0 -2 -0.23 2.04 1.93 2.64 2.06 2.07

0.5470 2 -1 0 -2 -2 -2 -0.35 0.38 -1.59 4.14 2.06 2.07

2N2 0.5377 2 -2 0 -2 0 -2 0.98 -0.55 -1.58 8.04 2.10 2.10

µ2 0.5363 2 0 0 -2 -2 -2 1.24 -2.28 2.85 9.88 2.07 2.07

0.5355 2 0 1 -2 -2 -2 1.23 -0.64 -2.19 3.26 2.09 2.09

0.5282 2 -1 -1 -2 0 -2 -1.42 3.11 2.33 -0.36 2.09 2.09

0.5275 2 -1 0 -2 0 -1 -1.78 1.60 -0.79 -0.28 2.13 2.13

N2 0.5274 2 -1 0 -2 0 -2 9.49 -11.11 -2.47 40.25 2.13 2.13

0.5267 2 -1 1 -2 0 -2 -1.40 -1.29 0.87 -2.98 2.09 2.09

ν2 0.5261 2 1 0 -2 -2 -2 0.92 -1.59 2.00 7.40 2.08 2.08

0.5253 2 1 1 -2 -2 -2 -0.58 0.62 0.76 0.72 2.09 2.09
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B. Auxiliary tables

Table B.1: Polar motion tidal terms estimated in this work in single session solution. Zero tides are included
to assess the time series noise level. The last columns list average of the specific standard deviations that
are representative of the formal errors of the individual coefficients {A+, B+, A−, B−}.

Period Delaunay argument A+ B+ A− B− σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas µas µas

days)

0.5188 2 -2 0 -2 2 -2 -0.04 2.03 -0.89 -2.16 2.09 2.09

0.5183 2 0 -1 -2 0 -2 -4.07 -0.81 0.12 0.45 2.09 2.10

0.5176 2 0 0 -2 0 -1 -7.79 6.92 4.59 -8.01 2.13 2.13

M2 0.5175 2 0 0 -2 0 -2 32.39 -73.17 -20.81 255.27 2.13 2.13

0.5168 2 0 1 -2 0 -2 -1.14 -2.02 0.73 2.01 2.11 2.11

λ2 0.5092 2 -1 0 -2 2 -2 1.60 -0.18 0.30 -0.11 2.09 2.09

L2 0.5080 2 1 0 -2 0 -2 -0.92 1.32 -0.12 -9.07 2.08 2.09

0.5078 2 -1 0 0 0 0 -2.04 -1.43 -2.54 -1.59 2.13 2.13

0.5078 2 -1 0 0 0 -1 4.09 -3.41 0.70 1.26 2.15 2.15

T2 0.5007 2 0 -1 -2 2 -2 2.90 -2.21 -1.92 7.24 2.11 2.10

S2 0.5000 2 0 0 -2 2 -2 -6.33 -33.94 -78.54 110.63 2.09 2.09

R2 0.4993 2 0 1 -2 2 -2 -1.61 1.13 -3.57 0.68 2.10 2.10

0.4987 2 0 0 0 0 1 -1.10 0.59 7.84 1.41 2.18 2.19

K2 0.4986 2 0 0 0 0 0 2.70 -12.63 -16.49 24.51 2.21 2.22

0.4986 2 0 0 0 0 -1 6.02 1.89 -5.98 9.16 2.21 2.21

0.4986 2 0 0 0 0 -2 0.30 1.79 -1.49 0.37 2.19 2.19

0.4898 2 1 0 0 0 0 -1.37 1.58 -3.89 2.61 2.12 2.12

0.4897 2 1 0 0 0 -1 1.01 1.79 2.83 0.26 2.12 2.12

0.4811 2 0 0 2 0 2 2.07 0.81 -2.88 3.66 2.07 2.07

zero 0.5319 2 -4 0 -2 2 -2 0.73 -0.77 -1.49 -1.65 2.09 2.09

zero 0.5130 2 0 1 0 -2 0 1.55 1.03 3.08 -1.97 2.09 2.09

zero 0.4543 2 0 0 0 2 -2 -1.34 0.62 3.59 -0.81 2.08 2.08
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Table B.2: dUT1 tidal terms estimated in this work in single session solution. Zero tides are included to
assess the time series noise level. The columns list average of the specific standard deviations that are
representative of the formal errors of the dUT1c, dUT1s individual coefficients.

Period Delaunay argument dUT1c dUT1s σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas

days)

1.2114 1 -1 0 -2 -2 -2 -0.22 0.16 0.11 0.11

1.1671 1 -2 0 -2 0 -1 0.22 0.38 0.11 0.11

2Q1 1.1669 1 -2 0 -2 0 -2 -0.10 1.45 0.11 0.11

1.1605 1 0 0 -2 -2 -1 0.12 -0.04 0.11 0.11

1.1603 1 0 0 -2 -2 -2 -0.35 1.13 0.11 0.11

1.1197 1 -1 0 -2 0 -1 -0.65 0.94 0.11 0.11

Q1 1.1195 1 -1 0 -2 0 -2 -2.70 5.19 0.11 0.11

1.1136 1 1 0 -2 -2 -1 -0.43 0.20 0.11 0.11

RO1 1.1135 1 1 0 -2 -2 -2 -0.48 0.93 0.11 0.11

1.0761 1 0 0 -2 0 0 0.19 -0.22 0.11 0.11

1.0760 1 0 0 -2 0 -1 -2.65 3.20 0.11 0.11

O1 1.0758 1 0 0 -2 0 -2 -13.28 17.38 0.11 0.11

1.0751 1 -2 0 0 0 0 -0.01 -0.34 0.11 0.11

T01 1.0695 1 0 0 0 -2 0 0.10 0.42 0.11 0.11

1.0406 1 -1 0 -2 2 -2 0.18 -0.10 0.11 0.11

1.0355 1 1 0 -2 0 -1 -0.07 -0.08 0.11 0.11

1.0354 1 1 0 -2 0 -2 0.14 -0.42 0.11 0.11

M1 1.0347 1 -1 0 0 0 0 0.63 -0.75 0.11 0.11

1.0346 1 -1 0 0 0 -1 -0.03 -0.53 0.11 0.11

χ1 1.0295 1 1 0 0 -2 0 0.18 0.04 0.11 0.11

π1 1.0055 1 0 -1 -2 2 -2 -0.16 -0.01 0.11 0.11

1.0029 1 0 0 -2 2 -1 -0.17 0.06 0.11 0.11

P1 1.0027 1 0 0 -2 2 -2 -3.41 5.70 0.11 0.11

S1 1.0000 1 0 -1 0 0 0 0.22 -0.94 0.11 0.11

0.9974 1 0 0 0 0 1 -0.33 0.51 0.11 0.11

K1 0.9973 1 0 0 0 0 0 9.51 -17.80 0.11 0.11

0.9971 1 0 0 0 0 -1 0.82 -2.21 0.11 0.11

0.9970 1 0 0 0 0 -2 0.15 0.17 0.11 0.11

ψ1 0.9946 1 0 1 0 0 0 0.14 0.05 0.11 0.11

ϕ1 0.9919 1 0 0 2 -2 2 -0.03 -0.30 0.11 0.11

TT1 0.9670 1 -1 0 0 2 0 0.25 0.06 0.11 0.11

J1 0.9624 1 1 0 0 0 0 0.84 -1.12 0.11 0.11

0.9623 1 1 0 0 0 -1 0.01 -0.17 0.11 0.11
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B. Auxiliary tables

Table B.2: dUT1 tidal terms estimated in this work in single session solution. Zero tides are included to
assess the time series noise level. The columns list average of the specific standard deviations that are
representative of the formal errors of the dUT1c, dUT1s individual coefficients.

Period Delaunay argument dUT1c dUT1s σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas

days)

So1 0.9342 1 0 0 0 2 0 0.23 -0.19 0.11 0.11

0.9300 1 2 0 0 0 0 -0.02 -0.30 0.11 0.11

Oo1 0.9294 1 0 0 2 0 2 0.63 -0.66 0.11 0.11

0.9293 1 0 0 2 0 1 0.41 -0.84 0.11 0.11

0.9292 1 0 0 2 0 0 0.16 -0.15 0.11 0.11

ν1 0.8991 1 1 0 2 0 2 -0.03 0.01 0.11 0.11

0.8990 1 1 0 2 0 1 0.03 0.30 0.11 0.11

zero 1.1065 1 1 0 0 -4 -1 -0.13 -0.07 0.11 0.11

zero 1.0176 1 1 1 0 -2 -1 -0.08 -0.16 0.11 0.11

zero 0.9142 1 1 -1 0 2 0 -0.22 0.16 0.11 0.11

0.5484 2 -3 0 -2 0 -2 0.15 0.14 0.11 0.11

0.5470 2 -1 0 -2 -2 -2 -0.21 -0.00 0.11 0.11

2N2 0.5377 2 -2 0 -2 0 -2 -0.51 -0.67 0.11 0.11

µ2 0.5363 2 0 0 -2 -2 -2 -0.67 -0.64 0.11 0.11

0.5355 2 0 1 -2 -2 -2 0.06 -0.05 0.11 0.11

0.5282 2 -1 -1 -2 0 -2 -0.04 0.04 0.11 0.11

0.5275 2 -1 0 -2 0 -1 -0.05 0.05 0.11 0.11

N2 0.5274 2 -1 0 -2 0 -2 -1.52 -3.85 0.11 0.11

0.5267 2 -1 1 -2 0 -2 -0.04 -0.02 0.11 0.11

ν2 0.5261 2 1 0 -2 -2 -2 -0.21 -0.57 0.11 0.11

0.5253 2 1 1 -2 -2 -2 -0.02 -0.02 0.11 0.11

0.5188 2 -2 0 -2 2 -2 -0.03 -0.09 0.11 0.11

0.5183 2 0 -1 -2 0 -2 -0.14 -0.13 0.11 0.11

0.5176 2 0 0 -2 0 -1 0.13 0.58 0.11 0.11

M2 0.5175 2 0 0 -2 0 -2 -8.26 -16.83 0.11 0.11

0.5168 2 0 1 -2 0 -2 0.17 0.31 0.11 0.11

λ2 0.5092 2 -1 0 -2 2 -2 0.19 0.23 0.11 0.11

L2 0.5080 2 1 0 -2 0 -2 0.11 0.39 0.11 0.11

0.5078 2 -1 0 0 0 0 0.00 -0.14 0.11 0.11

0.5078 2 -1 0 0 0 -1 0.12 0.05 0.11 0.11

T2 0.5007 2 0 -1 -2 2 -2 -0.13 -0.50 0.11 0.11

S2 0.5000 2 0 0 -2 2 -2 -0.60 -8.02 0.11 0.11

R2 0.4993 2 0 1 -2 2 -2 0.06 0.13 0.11 0.11
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Table B.2: dUT1 tidal terms estimated in this work in single session solution. Zero tides are included to
assess the time series noise level. The columns list average of the specific standard deviations that are
representative of the formal errors of the dUT1c, dUT1s individual coefficients.

Period Delaunay argument dUT1c dUT1s σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas

days)

0.4987 2 0 0 0 0 1 0.08 0.18 0.11 0.11

K2 0.4986 2 0 0 0 0 0 0.21 -2.51 0.11 0.11

0.4986 2 0 0 0 0 -1 -0.08 -1.13 0.11 0.11

0.4986 2 0 0 0 0 -2 0.18 0.14 0.11 0.11

0.4898 2 1 0 0 0 0 0.06 -0.21 0.11 0.11

0.4897 2 1 0 0 0 -1 -0.11 0.06 0.11 0.11

0.4811 2 0 0 2 0 2 0.02 0.09 0.11 0.11

zero 0.5319 2 -4 0 -2 2 -2 -0.06 0.26 0.11 0.11

zero 0.5130 2 0 1 0 -2 0 0.24 -0.22 0.11 0.11

zero 0.4543 2 0 0 0 2 -2 0.02 -0.09 0.11 0.11
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B. Auxiliary tables

Table B.3: Polar motion tidal terms estimated by the global solution. Zero tides are included to assess the
time series noise level. The last columns list average of the specific standard deviations that are represen-
tative of the formal errors of the individual coefficients {A+, B+, A−, B−}.

Period Delaunay argument A+ B+ A− B− σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas µas µas

days)

1.2114 1 -1 0 -2 -2 -2 -4.32 0.51 0.92 0.92

1.1671 1 -2 0 -2 0 -1 -7.51 -0.39 0.90 0.90

2Q1 1.1669 1 -2 0 -2 0 -2 -4.42 1.85 0.85 0.85

1.1605 1 0 0 -2 -2 -1 -0.42 -0.55 0.88 0.88

1.1603 1 0 0 -2 -2 -2 -9.34 2.73 0.88 0.88

1.1197 1 -1 0 -2 0 -1 -2.76 1.64 0.87 0.87

Q1 1.1195 1 -1 0 -2 0 -2 -32.40 7.19 0.87 0.87

1.1136 1 1 0 -2 -2 -1 0.07 -0.99 0.87 0.87

RO1 1.1135 1 1 0 -2 -2 -2 -0.70 5.37 0.87 0.87

1.0761 1 0 0 -2 0 0 -0.11 2.05 0.86 0.86

1.0760 1 0 0 -2 0 -1 -25.77 11.91 0.87 0.87

O1 1.0758 1 0 0 -2 0 -2 -127.30 57.91 0.89 0.89

1.0751 1 -2 0 0 0 0 -1.80 -2.09 0.90 0.90

T01 1.0695 1 0 0 0 -2 0 -0.41 0.57 0.88 0.88

1.0406 1 -1 0 -2 2 -2 -1.29 -0.19 0.85 0.85

1.0355 1 1 0 -2 0 -1 -0.61 0.72 0.83 0.83

1.0354 1 1 0 -2 0 -2 2.18 4.56 0.85 0.85

M1 1.0347 1 -1 0 0 0 0 11.60 -4.35 0.88 0.88

1.0346 1 -1 0 0 0 -1 4.45 0.61 0.86 0.86

χ1 1.0295 1 1 0 0 -2 0 1.41 0.95 0.86 0.86

π1 1.0055 1 0 -1 -2 2 -2 -3.06 5.24 0.87 0.87

1.0029 1 0 0 -2 2 -1 2.34 0.28 0.84 0.84

P1 1.0027 1 0 0 -2 2 -2 -47.78 33.07 0.84 0.84

S1 1.0000 1 0 -1 0 0 0 2.73 5.86 0.84 0.84

0.9974 1 0 0 0 0 1 -2.47 4.69 0.87 0.87

K1 0.9973 1 0 0 0 0 0 155.17 -90.38 0.89 0.89

0.9971 1 0 0 0 0 -1 20.31 -13.14 0.89 0.89

0.9970 1 0 0 0 0 -2 3.97 -5.38 0.89 0.89

ψ1 0.9946 1 0 1 0 0 0 -6.14 0.46 0.87 0.87

ϕ1 0.9919 1 0 0 2 -2 2 3.97 -3.03 0.87 0.87

TT1 0.9670 1 -1 0 0 2 0 0.75 1.09 0.83 0.83

J1 0.9624 1 1 0 0 0 0 3.08 -2.58 0.83 0.83

0.9623 1 1 0 0 0 -1 -1.41 -5.71 0.82 0.82
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Table B.3: Polar motion tidal terms estimated by the global solution. Zero tides are included to assess the
time series noise level. The last columns list average of the specific standard deviations that are represen-
tative of the formal errors of the individual coefficients {A+, B+, A−, B−}.

Period Delaunay argument A+ B+ A− B− σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas µas µas

days)

So1 0.9342 1 0 0 0 2 0 4.21 -2.94 0.84 0.84

0.9300 1 2 0 0 0 0 3.51 1.84 0.83 0.83

Oo1 0.9294 1 0 0 2 0 2 3.32 -3.51 0.80 0.80

0.9293 1 0 0 2 0 1 2.12 -3.30 0.82 0.82

0.9292 1 0 0 2 0 0 -0.28 2.15 0.84 0.84

ν1 0.8991 1 1 0 2 0 2 -1.58 -2.23 0.86 0.86

0.8990 1 1 0 2 0 1 0.85 -1.60 0.84 0.84

zero 1.1065 1 1 0 0 -4 -1 -1.05 1.72 0.85 0.85

zero 1.0176 1 1 1 0 -2 -1 1.11 2.00 0.84 0.84

zero 0.9142 1 1 -1 0 2 0 -2.52 -0.10 0.82 0.82

0.5484 2 -3 0 -2 0 -2 0.30 3.23 0.74 0.74

0.5470 2 -1 0 -2 -2 -2 0.00 1.29 0.73 0.73

2N2 0.5377 2 -2 0 -2 0 -2 0.01 0.29 -0.66 8.03 0.70 0.73

µ2 0.5363 2 0 0 -2 -2 -2 2.90 -1.94 2.32 6.57 0.70 0.70

0.5355 2 0 1 -2 -2 -2 1.88 1.85 0.64 4.40 0.70 0.74

0.5282 2 -1 -1 -2 0 -2 0.42 -1.47 2.27 0.99 0.70 0.73

0.5275 2 -1 0 -2 0 -1 -1.09 2.59 -3.15 2.24 0.70 0.74

N2 0.5274 2 -1 0 -2 0 -2 10.24 -10.22 3.64 44.75 0.70 0.74

0.5267 2 -1 1 -2 0 -2 -0.31 0.75 0.27 2.76 0.71 0.74

0.5261 2 1 0 -2 -2 -2 1.20 0.04 0.76 7.68 0.72 0.73

0.5253 2 1 1 -2 -2 -2 -3.32 -0.14 0.58 -1.04 0.70 0.75

0.5188 2 -2 0 -2 2 -2 1.99 0.87 -1.54 -2.84 0.70 0.75

0.5183 2 0 -1 -2 0 -2 -0.12 0.93 0.28 -2.69 0.70 0.74

0.5176 2 0 0 -2 0 -1 -5.55 4.73 -1.84 -10.42 0.70 0.73

M2 0.5175 2 0 0 -2 0 -2 33.65 -71.23 -5.59 264.69 0.70 0.73

0.5168 2 0 1 -2 0 -2 -1.53 0.44 1.43 0.75 0.71 0.73

λ2 0.5092 2 -1 0 -2 2 -2 1.58 0.45 -5.91 -7.52 0.71 0.73

L2 0.5080 2 1 0 -2 0 -2 -1.89 1.97 3.35 -3.45 0.69 0.73

0.5078 2 -1 0 0 0 0 -0.89 -0.79 -6.69 3.05 0.69 0.74

0.5078 2 -1 0 0 0 -1 3.34 -0.74 -0.91 0.77 0.71 0.72

T2 0.5007 2 0 -1 -2 2 -2 0.27 -2.83 -4.35 7.14 0.71 0.71

S2 0.5000 2 0 0 -2 2 -2 -1.31 -29.34 -64.00 115.83 0.71 0.73

R2 0.4993 2 0 1 -2 2 -2 0.28 0.32 -0.61 -3.58 0.70 0.73
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B. Auxiliary tables

Table B.3: Polar motion tidal terms estimated by the global solution. Zero tides are included to assess the
time series noise level. The last columns list average of the specific standard deviations that are represen-
tative of the formal errors of the individual coefficients {A+, B+, A−, B−}.

Period Delaunay argument A+ B+ A− B− σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas µas µas

days)

0.4987 2 0 0 0 0 1 -0.62 2.37 -7.52 -2.94 0.72 0.73

K2 0.4986 2 0 0 0 0 0 1.14 -13.62 -17.44 30.02 0.71 0.72

0.4986 2 0 0 0 0 -1 5.89 -1.80 -7.95 7.83 0.74 0.75

0.4986 2 0 0 0 0 -2 -0.28 4.76 2.48 -4.86 0.74 0.73

0.4898 2 1 0 0 0 0 1.64 3.39 -2.68 2.06 0.73 0.77

0.4897 2 1 0 0 0 -1 0.01 -0.91 -1.68 -1.17 0.72 0.76

0.4811 2 0 0 2 0 2 0.16 -0.01 -1.04 -2.87 0.69 0.75

zero 0.5319 2 -4 0 -2 2 -2 1.07 -0.31 0.71 0.41 0.30 0.74

zero 0.5130 2 0 1 0 -2 0 -0.08 1.29 0.69 -0.24 1.92 0.71

zero 0.4543 2 0 0 0 2 -2 1.96 -0.60 0.69 -0.39 0.23 0.71
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Table B.4: dUT1 tidal terms estimated by the global solution. Zero tides are included to assess the time
series noise level. The last columns list average of the specific standard deviations that are representative
of the formal errors of the individual coefficients dUT1c and dUT1s.

Period Delaunay argument dUT1c dUT1s σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas

days)

1.2114 1 -1 0 -2 -2 -2 -0.12 0.15 0.05 0.05

1.1671 1 -2 0 -2 0 -1 0.18 0.60 0.05 0.05

2Q1 1.1669 1 -2 0 -2 0 -2 -0.66 0.91 0.06 0.06

1.1605 1 0 0 -2 -2 -1 0.42 0.02 0.06 0.06

1.1603 1 0 0 -2 -2 -2 -0.15 0.79 0.06 0.06

1.1197 1 -1 0 -2 0 -1 -0.44 0.97 0.06 0.06

Q1 1.1195 1 -1 0 -2 0 -2 -3.21 4.69 0.06 0.06

1.1136 1 1 0 -2 -2 -1 0.25 0.10 0.06 0.06

RO1 1.1135 1 1 0 -2 -2 -2 -0.82 0.68 0.06 0.06

1.0761 1 0 0 -2 0 0 0.07 -0.35 0.06 0.06

1.0760 1 0 0 -2 0 -1 -2.79 3.46 0.06 0.06

O1 1.0758 1 0 0 -2 0 -2 -12.76 16.97 0.06 0.06

1.0751 1 -2 0 0 0 0 0.13 0.20 0.06 0.06

T01 1.0695 1 0 0 0 -2 0 -0.38 0.66 0.06 0.06

1.0406 1 -1 0 -2 2 -2 0.16 -0.56 0.06 0.06

1.0355 1 1 0 -2 0 -1 0.08 0.28 0.06 0.06

1.0354 1 1 0 -2 0 -2 0.60 -0.47 0.06 0.06

M1 1.0347 1 -1 0 0 0 0 0.91 -0.93 0.06 0.06

1.0346 1 -1 0 0 0 -1 0.17 -0.36 0.06 0.06

χ1 1.0295 1 1 0 0 -2 0 -0.29 -0.18 0.06 0.06

π1 1.0055 1 0 -1 -2 2 -2 -0.23 0.33 0.06 0.06

1.0029 1 0 0 -2 2 -1 -0.34 -0.39 0.06 0.06

P1 1.0027 1 0 0 -2 2 -2 -3.47 5.71 0.06 0.06

S1 1.0000 1 0 -1 0 0 0 -0.029 -0.611 0.06 0.06

0.9974 1 0 0 0 0 1 -0.76 0.56 0.06 0.06

K1 0.9973 1 0 0 0 0 0 9.24 -17.93 0.06 0.06

0.9971 1 0 0 0 0 -1 0.84 -2.26 0.06 0.06

0.9970 1 0 0 0 0 -2 0.41 0.26 0.06 0.06

ψ1 0.9946 1 0 1 0 0 0 -0.18 -0.41 0.06 0.06

ϕ1 0.9919 1 0 0 2 -2 2 -0.05 -0.33 0.06 0.06

TT1 0.9670 1 -1 0 0 2 0 0.05 -0.31 0.06 0.06

J1 0.9624 1 1 0 0 0 0 0.32 -1.05 0.06 0.06

0.9623 1 1 0 0 0 -1 -0.23 0.08 0.06 0.06
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Table B.4: dUT1 tidal terms estimated by the global solution. Zero tides are included to assess the time
series noise level. The last columns list average of the specific standard deviations that are representative
of the formal errors of the individual coefficients dUT1c and dUT1s.

Period Delaunay argument dUT1c dUT1s σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas

days)

So1 0.9342 1 0 0 0 2 0 0.44 0.11 0.06 0.06

0.9300 1 2 0 0 0 0 -0.09 -0.57 0.06 0.06

Oo1 0.9294 1 0 0 2 0 2 0.54 -1.20 0.06 0.06

0.9293 1 0 0 2 0 1 0.31 -0.85 0.06 0.06

0.9292 1 0 0 2 0 0 0.23 0.23 0.06 0.06

ν1 0.8991 1 1 0 2 0 2 0.01 -0.29 0.06 0.06

0.8990 1 1 0 2 0 1 0.07 0.16 0.06 0.06

zero 1.1065 1 1 0 0 -4 -1 0.025 -0.143 0.058 0.057

zero 1.0176 1 1 1 0 -2 -1 0.135 0.060 0.057 0.057

zero 0.9142 1 1 -1 0 2 0 -0.071 -0.031 0.056 0.056

0.5484 2 -3 0 -2 0 -2 0.05 -0.16 0.05 0.05

0.5470 2 -1 0 -2 -2 -2 -0.17 -0.01 0.05 0.05

2N2 0.5377 2 -2 0 -2 0 -2 -0.39 -0.56 0.05 0.05

µ2 0.5363 2 0 0 -2 -2 -2 -0.89 -0.75 0.05 0.05

0.5355 2 0 1 -2 -2 -2 0.16 -0.06 0.05 0.05

0.5282 2 -1 -1 -2 0 -2 -0.10 0.13 0.05 0.05

0.5275 2 -1 0 -2 0 -1 -0.09 -0.11 0.05 0.05

N2 0.5274 2 -1 0 -2 0 -2 -1.47 -3.77 0.05 0.05

0.5267 2 -1 1 -2 0 -2 -0.07 -0.20 0.05 0.05

ν2 0.5261 2 1 0 -2 -2 -2 -0.22 -0.69 0.05 0.05

0.5253 2 1 1 -2 -2 -2 -0.11 -0.03 0.05 0.05

0.5188 2 -2 0 -2 2 -2 -0.01 0.10 0.05 0.05

0.5183 2 0 -1 -2 0 -2 -0.06 -0.24 0.05 0.05

0.5176 2 0 0 -2 0 -1 0.19 0.47 0.05 0.05

M2 0.5175 2 0 0 -2 0 -2 -7.76 -16.64 0.05 0.05

0.5168 2 0 1 -2 0 -2 0.02 0.20 0.05 0.05

λ2 0.5092 2 -1 0 -2 2 -2 -0.31 -0.16 0.05 0.05

L2 0.5080 2 1 0 -2 0 -2 0.18 0.29 0.05 0.05

0.5078 2 -1 0 0 0 0 0.08 -0.04 0.05 0.05

0.5078 2 -1 0 0 0 -1 0.01 -0.05 0.05 0.05

T2 0.5007 2 0 -1 -2 2 -2 0.09 -0.81 0.05 0.05

S2 0.5000 2 0 0 -2 2 -2 -0.42 -7.96 0.05 0.05

R2 0.4993 2 0 1 -2 2 -2 0.21 0.01 0.05 0.05
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Table B.4: dUT1 tidal terms estimated by the global solution. Zero tides are included to assess the time
series noise level. The last columns list average of the specific standard deviations that are representative
of the formal errors of the individual coefficients dUT1c and dUT1s.

Period Delaunay argument dUT1c dUT1s σ̄1 σ̄2

(solar γ l l ′ F D Ω µas µas µas µas

days)

0.4987 2 0 0 0 0 1 0.07 -0.17 0.05 0.05

K2 0.4986 2 0 0 0 0 0 0.11 -2.47 0.05 0.05

0.4986 2 0 0 0 0 -1 0.15 -0.86 0.05 0.05

0.4986 2 0 0 0 0 -2 0.04 -0.27 0.05 0.05

0.4898 2 1 0 0 0 0 -0.09 -0.36 0.05 0.05

0.4897 2 1 0 0 0 -1 -0.00 -0.06 0.05 0.05

0.4811 2 0 0 2 0 2 -0.09 -0.04 0.05 0.05

zero 0.5319 2 -4 0 -2 2 -2 0.102 -0.081 0.049 0.049

zero 0.5130 2 0 1 0 -2 0 -0.112 0.029 0.048 0.047

zero 0.4543 2 0 0 0 2 -2 0.011 0.154 0.047 0.047
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