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Abstract

Profound knowledge of the variable Earth rotation is required to derive accurate and reliable

statements and parameters from space geodetic techniques. The geophysical know-how, which

forms the basis of Earth rotation studies, benefits in turn from precise measurements and time-

series of Earth rotation parameters (ERP). They allow science to broaden the expertise in the

field of dynamic processes and interactions of the system Earth and thereby to improve global

geophysical models. This dissertation deals with Earth rotation variations in the diurnal and

sub-diurnal frequency range with the main objective of developing a new high-frequency ERP

prediction model. It should, furthermore, answer the question, if an empirical ocean tide model,

being the most independent data source, can be used to derive accurate ERP predictions which

could potentially replace the current conventional model.

The conventional prediction model for short-period ocean tidal effects on Earth rotation rec-

ommended by the International Earth Rotation and Reference Systems Service (IERS) has been

found to yield imperfect geodetic results and introduces biases in Global Positioning System (GPS)

orbits. An updated model for polar motion and Universal Time 1 (UT1) is, therefore, highly de-

sirable by the scientific community. Due to the high precision of measurements, several empir-

ical ERP models have been developed by harmonic analysis of the residuals of space geodetic

techniques. However, they lack of independence, and single-technique models differ in inter-

technique comparisons. There are, in addition, combination models determined from several

techniques, presumed to be the most precise models currently available. On the other hand,

ocean tide models have been improving over the last decades and may serve as input to an inde-

pendent ERP prediction model. The present thesis addresses the pivotal question of whether an

empirical ocean tide model may be used for the development of an high-frequency ERP model

and seeks to detect challenges and limitations thereof.

As empirical ocean tide models do not include any hydrodynamic equations, the determi-

nation of consistent oceanic tidal currents is one major task addressed in this dissertation. An

algorithm based on simplified momentum equations and continuity constraints is developed to

derive barotropic volume transports and, therewith, motion terms of oceanic tidal angular mo-

mentum (OTAM). The resultant OTAM values indicate the necessity for different weights of the

continuity equation for different components. Equatorial components of diurnal tides require a

large weight of 10000 compared to weights between 400 and 800 for the polar component. Semi-

diurnal tides, on the other hand, show reasonable results for smaller weights between 100 and

200 for the equatorial components and between 400 to 2000 for polar components. If these vari-

able weights are used, OTAM from estimated volume transports and assimilation models differ

by 4.7–19.7% (mean over x-, y-, and z-component).

A final model, based on the empirical ocean tide model EOT11a, supplemented by ten addi-

tional tidal constituents through quadratic admittance interpolation of angular momentum val-



ues, is derived and used as a priori model in the analysis of Very Long Baseline Interferometry

(VLBI) observations. In a comparison with other types of high-frequency ERP models, VLBI data

between 2011 and 2013 are analyzed using the Vienna VLBI Software. Post-fit ERP residual spec-

tra and baseline length repeatabilities are calculated in order to validate four models. The results

show that the empirical ERP model yields superior results than those based on ocean tide models.

It improves the majority of baselines regarding their repeatabilities and gives generally smallest

ERP residuals.

The model based on empirical ocean tides is found to perform similarly accurate as the IERS

conventional model with respect to baseline length repeatabilities. When using the empirical

ERP model as reference, the newly derived model shows smaller baseline length variations for

40% of all 161 baselines, the conventional model improves 41%. For the comparison of post-fit

residual spectra, the EOT11a-based model yields smaller amplitudes for more tidal frequencies

than the conventional model and the same number as the empirical model. However, three main

tidal constituents show a significant degradation with respect to post-fit residual spectra. Given

that a similar behavior is visible for another ERP model based on ocean tides, imperfect hydro-

dynamic modeling or observational inaccuracies of altimetry are possible causes. These findings

emphasize the need for further studies on high-frequency ERP predictions. An independent and

consistently derived model, such as the one developed in the present work, may serve as new

reference for diurnal and sub-diurnal polar motion and UT1 variations in the analysis of space

geodetic techniques.



Kurzfassung

Fundierte Kenntnisse über Erdrotationsschwankungen tragen maßgeblich zur genauen und

zuverlässigen Parameterschätzung aus geodätischen Weltraumverfahren bei. Die geophysikali-

schen Grundlagen bilden die Basis zur wissenschaftlichen Vertiefung auf diesem Gebiet. Vice ver-

sa profitieren sie von präzisen Beobachtungen und Messungen der Erdrotationsparameter. Deren

Zeitserien erlauben es der Wissenschaft, das Verständnis über globale dynamische Prozesse so-

wie Interaktionen des Systems Erde zu erweitern und damit globale geophysikalische Modelle zu

entwickeln. Die vorliegende Dissertation befasst sich mit Erdrotationsschwankungen im täglichen

und subtäglichen Bereich und der Entwicklung eines neuen Vorhersagemodells für kurzperiodi-

sche Änderungen der Erdrotation. Außerdem wird versucht die Frage zu beantworten, ob ein

empirisches Modell der Meeresgezeiten herangezogen werden kann, um ein genaues Erdrotati-

onsmodell zu entwickeln und damit das aktuelle Standardmodell zu ersetzen.

Das konventionelle Vorhersagemodell des internationalen Erdrotationsdienstes (IERS) für

kurzperiodische Erdrotationsschwankungen weist Defizite bei der Berechnung von geodätischen

Größen auf und erzeugt systematische Abweichungen bei der GPS-Bahnbestimmung. Ein neues,

verbessertes Modell für Polbewegung und Drehgeschwindigkeit der Erde wird daher von wis-

senschaftlicher Seite gefordert. Wegen der hohen Präzision heutiger Messungen mit modernen

geodätischen Weltraumverfahren gewinnen empirische Modelle immer mehr an Bedeutung. Sie

stellen allerdings keine unabhängigen Datenquellen dar und liefern oftmals nur für das Raumver-

fahren, aus dem sie abgeleitet werden, gute Ergebnisse. Allerdings deuten Studien auf eine sehr

gute Übereinstimmung zwischen kombinierten Modellen aus Beobachtungen verschiedener Ver-

fahren hin. Auch Modelle für Meeresgezeiten haben in den letzten Jahren Fortschritte hinsichtlich

Genauigkeit, räumlicher Auflösung und Konsistenz erzielt und bilden so eine mögliche Grundlage

zur Entwicklung eines unabhängigen Erdrotationsmodells. Die vorgestellte Arbeit umfasst die not-

wendigen Arbeitsschritte zur Entwicklung eines Erdrotationsmodells basierend auf empirischen

Meeresgezeiten und zeigt diesbezügliche Probleme und Einschränkungen auf.

Da empirische Modelle für Meeresgezeiten nicht mittels hydrodynamischer Modellierung be-

rechnet werden, müssen konsistente Strömungen aus vorhandenen Höhenvariationen der Mee-

resoberfläche abgeleitet werden. Die Entwicklung eines Algorithmus zur hydrodynamischen Be-

stimmung von barotropen, horizontalen Geschwindigkeiten stellt daher einen gewichtigen Teil

dieser Arbeit dar. Die aus den Geschwindigkeiten abgeleiteten Relativdrehimpulse legen nahe,

die Kontinuitätsgleichung für verschiedene Komponenten unterschiedlich zu gewichten. Äquato-

riale Komponenten von täglichen Partialtiden zeigen größere Übereinstimmung mit Relativdre-

himpulsen aus hydrodynamischen Modellen bei großen Gewichten von 10000. Für die polare

Komponente wird ein Gewicht zwischen 400 und 800 verwendet. Halbtägliche Partialtiden zei-

gen bereits für geringere Gewichte zwischen 100 und 200 für äquatoriale und 400 und 2000 für

polare Komponenten die größte Übereinstimmung. Die Relativdrehimpulse unterscheiden sich



dann von jenen mit hydrodynamischen Modellen gerechneten um 4.7–19.7% (Mittelwert über

x-, y- und z-Komponenten).

Das finale Modell basiert auf Daten des empirischen Meeresgezeitenmodells EOT11a und wird

um zehn Partialtiden mittels quadratischer Interpolation der Drehimpulsfunktionen erweitert. Für

die Validierung werden VLBI-Beobachtungen der Jahre 2011–2013 mit der Vienna VLBI Software

ausgewertet. ERP Residuenspektren werden für vier Validierungsmodelle ebenso abgeleitet wie

Wiederholbarkeiten von Basislinienlängen. Die Ergebnisse zeigen einen Genauigkeitsvorsprung

des empirischen ERP Modells gegenüber den anderen. Es minimiert im Allgemeinen sowohl die

post-fit Residuen der Erdrotationsparameter als auch die Wiederholbarkeit der Mehrheit der Ba-

sislinien.

Das neu entwickelte Modell basiert auf empirischen Meeresgezeiten und verbessert die

Basislängen-Wiederholbarkeit in vergleichbarem Ausmaß wie das konventionelle Modell des

IERS. Mit dem empirischen Modell als Referenz verbessert das neue Modell 40% aller 161

Basislinien, das konventionelle Modell 41%. Im Vergleich der Residuenspektren schneidet das

EOT11a-basierte Modell ebenfalls ähnlich wie das konventionelle Modell ab. Größere Diskre-

panzen sind an Frequenzen von drei Haupttiden zu erkennen. Da ein weiteres, ebenfalls auf

Altimetrie-Beobachtungen basierendes Modell ähnliche Abweichungen aufweist, sind Fehler bei

der hydrodynamischen Modellierung und Messungenauigkeiten der Altimetrie mögliche Ursa-

chen. Diese Ergebnisse unterstreichen die Wichtigkeit eines unabhängigen und konsistent abge-

leiteten Modells, wie jenes in dieser Arbeit vorgestellte, für die Vorhersage von kurzperiodischen

Erdrotationsschwankungen in der Auswertung von geodätischen Weltraumverfahren.
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Chapter 1

Introduction

The Earth is a complex, dynamic system, undergoing variations of its geometric properties,

its gravity field, and its rotation on a wide variety of timescales. Periodical changes of the Earth’s

rotation occur on periods from hours to decades and longer, reflecting the diverse processes that

lead to these irregularities. Mass redistribution due to tidal forces, exerted by gravitational attrac-

tion of celestial objects are the major source of changes in Earth rotation speed and direction of

the rotation axis. These non-uniformities have considerable implications on observations of ob-

jects in space as well as precise navigation on Earth using space geodetic techniques, such as VLBI

or Global Navigation Satellite Systems (GNSS), which are used to realize e.g. geodetic reference

frames. Thus, studies of Earth rotation and the development of correction models are beneficial

for global society in an era of rapid environmental changes. In addition, scientific studies and—if

possible—continuous monitoring and observations extend our knowledge and understanding of

the Earth as a dynamic system.

1.1 The Earth’s variable rotation

Describing how the deformable Earth changes its shape and its rotation is an important task

of modern geodesy and geodynamics. The rotation of the solid Earth varies—under the principle

of conservation of angular momentum—due to external torques by celestial objects, mass distri-

bution within the Earth system, and angular momentum transfer between the solid Earth and

the covering fluid components, namely atmosphere and oceans. This allows the derivation of the

rotation of the solid Earth by computing the change of angular momentum of the fluid parts of the

Earth. Both the orientation of the rotation axis and the rotation speed change periodically and

episodically over time. The description of changes requires a reference, to which the variations

are referred to. The axis movement with respect to the crust is polar motion, that with respect

to (inertial) space precession and nutation. Rotation speed changes are usually defined as excess

over the nominal length of day, ∆LOD.

Due to Earth’s flattening, gravitational forces from outside the equatorial plane exert a torque

on the equatorial bulge. This causes the rotation axis to revolve around the ecliptic pole with a

1



1.2 Motivation and objectives of this study

period of about 25800 years. This precession, having an aperture of 23.5◦, denotes the largest

deviation from uniform rotation. It is superimposed by nutation, consisting of harmonic variations

with periods between several days and 18.6 years due to periodic changes of the relative positions

of Moon and Sun, respectively. The polar motion signal is dominated by an annual peak of about

3 m, mainly due to seasonal mass redistribution in the atmosphere, and the Chandler wobble

(CW), a free mode of the Earth at a period of 433 days and a variable amplitude of up to 6 m.

The excitation mechanism of the latter, originating from the non-alignment of the figure axis and

the rotation axis, is still under debate. Besides a linear trend of 1.8 ms/cy, ∆LOD consists of

variations up to several milliseconds (ms) on timescales up to decades.

The largest variations of Earth rotation occur on periods of several days to many years. How-

ever, irregularities at even higher frequencies exist and are detectable in observations. These

short period variations, i.e., periods of one day and shorter, have been subject of many scientific

studies and are also topic of this thesis. High-frequency polar motion and∆LOD reach maximum

total amplitudes in the order of 1 milliarcseconds (mas) and 1 ms, respectively. The main cause of

high-frequency variations in Earth rotation are ocean tides induced by the gravitational potential

of Moon and Sun. Tidal variations of the ocean water masses induce changes in the Earth’s inertia

tensor as well as angular momentum exchange with the solid Earth.

1.2 Motivation and objectives of this study

Harmonic variations of Earth rotation can be predicted by theoretical or semi-empirical mod-

els. The Earth orientation parameters (EOP), describing the transformation between an Earth-

fixed and a space-fixed reference frame, play an important role when observations from Earth to

space or vice-versa, are carried out. Even though prediction models have improved greatly over

the last decades, continuous monitoring of the parameters is a crucial task in order to account for

the irregular or not-included part of Earth orientation.

The need for most-accurate prediction models is obvious in cases where Earth orientation

cannot be estimated in post-processing, such as spacecraft navigation. But also when estimating

EOP in post-processing using least-squares, accurate functional and a priori models are required

to derive accurate results. The a priori information is even more important when parameters are

not estimated. For example, VLBI Intensive sessions usually do not have enough observations to

estimate ERP in the analysis, requiring these parameters to be fixed to their a priori values.

The high-frequency Earth rotation variations require a priori modeling, even though the effect

is small compared to long-term variations. However, the standard model mentioned in the IERS

Conventions 2010 does not accurately explain all ocean tidal effects. Many efforts have been

made to improve the conventional model by developing an empirical model based on VLBI or

GNSS observations (e.g., Artz et al., 2011; Gipson, 1996; Rothacher et al., 2001).

These empirical models agree to the 10 µas level for polar motion and 1 µs for UT1-UTC.

However, they lack of independence and consistency: Inter-technique comparisons show less

2



1. Introduction

agreement than intra-technique ones, i.e., observations from VLBI and GNSS do not fully agree.

In addition, empirical estimation might potentially overlay other geophysical effects. An inde-

pendent ERP model can be derived from ocean tide models by calculating OTAM as has been

accomplished by several authors (Brosche et al., 1989; Chao et al., 1996; Ray et al., 1994). These

models, based on hydrodynamic or assimilation ocean tide models, typically lack of accuracy

when used in the analysis of space geodetic techniques.

The aim of this work is to derive a high-frequency ERP model based on empirical ocean tide

models. These models are based purely on satellite altimetry observations and provide therefore

a data source which is independent of observation techniques used for the operational estimation

of ERP. As relative angular momentum requires the knowledge of oceanic flows, a basic hydro-

dynamic approach by Ray (2001) is used to derive tidal currents from measured elevations. This

approach keeps the tidal heights fixed throughout the inversion process. The ultimate goal of this

thesis is to provide an independent, consistent, and accurate high-frequency ERP model which

can be used a priori in the analysis of space geodetic techniques.

1.3 Outline of the thesis

Following this introductory section, Chapter 2 describes the theoretical framework of Earth

rotation variations. The concepts of celestial and terrestrial reference systems are presented as

well as the corresponding reference frames, being the realization of the former. Subsequently, the

Earth orientation parameters, required for the transformation from one frame to the other, are

introduced. The reader gets an insight into modeling and observations of Earth rotation variations

and their excitation mechanisms. The basic concepts of VLBI and GNSS are outlined.

Chapter 3 provides an insight into ocean tides and their impact on Earth rotation. After a brief

overview of observation techniques of the ocean surface, the main tide generating force and its

representation, the tidal potential, are introduced and described. In addition, the spherical har-

monic expansion of the potential is explained. The subsequent sections deal with two important

astronomical argument representations, followed by an overview of existing ocean tide models.

The final part of this chapter describes ocean tidal effects on Earth rotation, including effective

angular momentum functions.

Chapter 4 is dedicated to the approach of deriving oceanic currents from measured elevations,

based on Ray (2001). The equations of motion and the continuity equation are introduced and

the required correction terms are explained in proper notation. Algorithmic details, such as C-

grid, numerical considerations, and preconditioning, are introduced. The results of a first test run

using model HAMTIDE11a are shown and compared to a hydrodynamic solution. Several issues

and “tuning” possibilities are discussed in order to find an optimal parameterization.

The findings of Chapter 4 are used in Chapter 5 to derive ERP correction models based on

empirical ocean tides. Proper weighting parameters for different tidal constituents are empiri-

cally found by comparing OTAM from several ocean tide models. The theory of admittance as a

3



1.3 Outline of the thesis

possibility to include minor tides in the ERP model, is described in this chapter as well.

Chapter 6 shows validation results using VLBI observations. The concept of least squares

as parameter estimation process and the analysis software package as well as input data are

described. The results are illustrated as differences of amplitude spectra and baseline length

repeatabilities.

The final Chapter 7 summarizes the main findings of this thesis, draws the conclusions and

gives a short outlook to future work and challenges of the presented topic.

4



Chapter 2

Earth rotation variations

2.1 Reference systems and Earth orientation

When describing and studying Earth rotation variations, there is a need for reference systems

to which they can be referred. Since the Earth rotation axis varies with respect to an inertial

system as well as to the solid Earth, there is the need for two coordinate systems: The space-fixed

celestial reference system (CRS) and the Earth-fixed terrestrial reference system (TRS). Both are

in principle four-dimensional, containing three geometric coordinates and a time coordinate.

Following the conventional terminology, a reference system is an ideal concept and based

on mathematical and physical statements, while a reference frame is the constructed material-

ization of the former (Kovalevsky et al., 1989). Modern reference systems are realized through

coordinates of a set of points and objects determined from observations (Plag et al., 2009).

Celestial reference frames

A CRS, representing an approximation to an inertial system, is based on positions of selected

celestial objects. The origin is the barycenter of the solar system, the direction of the axes are

defined by the equatorial plane and the ecliptic or by positions of extragalactic radio sources. The

time standard is the Barycentric Coordinate Time (TCB, Soffel et al., 2003; Torge & Müller, 2012).

The current conventional celestial reference frame is the International Celestial Reference

Frame 2 (ICRF2, Fey et al., 2009). It contains coordinates of 3414 radio sources, 295 of which

are “defining” sources with high position stability and low source structure index. Those defining

sources will be used for future maintenance and extensions of the ICRF2 (Fey et al., 2009).

The catalog coordinates are derived from approximately 6.5 million group-delay measure-

ments and 4540 VLBI sessions between 1979 and 2009. They are declared to have a noise floor

of about 40 µas and an axis stability of about 10 µas (Fey et al., 2009).

5



2.1 Reference systems and Earth orientation

Terrestrial reference frames

The International Terrestrial Reference System (ITRS) is a geocentric reference system co-

rotating with the Earth. The origin of the ITRS is the center of mass including oceans and atmo-

sphere, the z axis agrees with the mean direction of the rotation axis between 1900 and 1905

(Torge & Müller, 2012).

The unit length is the meter, according to the International System of Units (SI), the orien-

tation is maintained in accordance with the orientation of the Bureau International de l′Heure

(BIH) Terrestrial System (BTS) at epoch 1984.0. To ensure the time evolution of the orientation,

a no-net-rotation over the whole Earth with respect to horizontal motions is imposed.

A realization of the ITRS consists of Cartesian coordinates at a reference epoch of globally

distributed sites and their constant velocities. The contributing space geodetic techniques are

VLBI, Satellite Laser Ranging (SLR), GNSS and Doppler Orbitography Radiopositioning Integrated

by Satellites (DORIS). The most recent realization of the ITRS is the ITRF2008 (Altamimi et al.,

2011). It is an improved solution compared to the previous realization, the ITRF2005, in terms

of precision of positions and velocities. The origin and the scale are believed to be as accurate as

1 cm and 1.2 parts per billion (ppb) or 8 mm at the equator, respectively (Altamimi et al., 2011).

Earth orientation parameters

The transformation between two three-dimensional coordinate systems requires three inde-

pendent angles, the Euler angles, if the origins of both systems coincide. However, the procedure

of transformation using Euler angles would require time-consuming matrix operations due to the

large temporal variations of those angles (Torge & Müller, 2012, p. 43). Therefore, and by tra-

dition, the transformation is split into two parts, using an intermediate reference frame, which

requires a set of five angles to perform the full coordinate transformation from a terrestrial to a

celestial reference frame. It is usually written as (Soffel & Langhans, 2013)

rcel(t) = Q(t) ·R(t) ·W(t) · rter(t) (2.1)

where Q(t), R(t), and W(t) are transformation matrices due to the motion of the celestial pole

in the celestial reference system (precession-nutation), the rotation of the Earth (spin), and the

motion of the pole in the intermediate system (polar motion), respectively (Petit & Luzum, 2010).

The five elements required to perform the transformation as described in Equation 2.1 are called

EOP. The terrestrial coordinates rter(t) are first transformed to an intermediate system using the

relation between the three ERP and the matrices W and R (Sovers et al., 1998),

W= XY=




cos px(t) 0 − sin px(t)

0 1 0

sin px(t) 0 cos px(t)







1 0 0

0 cos py(t) sin py(t)

0 − sin py(t) cos py(t)


 (2.2)
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2. Earth rotation variations

R=




cos H(t) − sin H(t) 0

sin H(t) cos H(t) 0

0 0 1


 . (2.3)

H is the hour angle of the true equinox of date which is related to UT1, px and py are the

polar motion coordinates in x and y direction, respectively. The intermediate frame is finally

transformed to the celestial frame using Q(t). The separation of polar motion and precession-

nutation, as described below, is done so that polar motion is long period in the terrestrial reference

frame and precession-nutation is long period in the celestial reference frame (Gross, 2007).

In contrast to three Euler angles, five EOP are not independent. Since σcel = σter +Ω, where

Ω is the mean angular velocity of the Earth and σ is the frequency of motion, retrograde motions

with nearly diurnal frequency in the terrestrial system, σter ≈ −Ω, have low frequencies in the

celestial system. More precisely, Brzeziński & Capitaine (2011) show that

p(t) = −n(t)e−iΩt (2.4)

where p(t) = px(t)− ipy(t), i ≡p−1, Ωt is an approximation of Greenwich mean sidereal time

(GMST), and n(t) = δψ(t) sinε0 + iδε(t) where δψ and δε are corrections in longitude and

obliquity to the adopted nutation model, i.e., the nutation parameters. ε0 is the mean obliquity

of the ecliptic (Gross, 2007).

There is a need for a reference pole in the intermediate system when transforming terrestrial

to celestial coordinates (cf. Equation 2.1). The International Astronomical Union (IAU) defined

the celestial intermediate pole (CIP) to be that reference pole (McCarthy & Petit, 2004, Chapter 5).

The CIP extends the definition of the celestial ephemeris pole (CEP) by clarifying the separation of

polar motion and precession-nutation due to their interchangeability (Equation 2.4; Gross, 2007).

Then, polar motion is defined as motion of the CIP in the terrestrial frame at all frequencies outside

the range [−1.5,−0.5] cycles per sidereal day (cpsd). Motions within that range are assigned

to precession-nutation, as it was the case for the CEP (Capitaine, 2000). Figure 2.1 illustrates

the conventional relation between precession-nutation and polar motion in the terrestrial and

celestial reference frame.

The location of the CIP, which is continuously observed by space geodetic techniques and

provided by the IERS is given by the polar motion parameters px(t) and py(t). Similarly, the

two celestial pole offsets, δX and δY , describe the variations of the celestial pole. The fifth

EOP describes the variation of the Earth rotation velocity. It is provided as UT1−Universal Time

Coordinated (UTC) (Petit & Luzum, 2010). The set of the three terrestrial EOP, polar motion and

UT1−UTC, are usually referred to as ERP.
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0 0.5 1 1.5 2-2 -1.5 -1 -0.5

0 0.5 1-2 -1.5 -1 -0.5-3 -2.5

cpsd

cpsd

Frequency in CRS

Nutation Polar motionPolar motion

Frequency in TRS

Figure 2.1: Frequency convention of the CIP. Motions of the CIP at frequencies in the range
[−0.5,0.5] cpsd as viewed in the celestial reference frame (top) or—equivalently—in the range
[−1.5,−0.5] cpsd as viewed in the terrestrial reference frame (bottom) are considered to be
precession-nutation. All other motions are considered to be polar motion. Redrawn from De-
hant & Mathews (2007).

2.2 Observed and modeled Earth rotation variations

This section gives an overview of the observed signals in Earth rotation parameters as well as

their excitation mechanisms. It is separated into (1) rotation speed, UT1−UTC or length-of-day

(LOD), and (2) axis orientation (polar motion and precession–nutation), thus in conformity with

the EOP.

The processes leading to variations in Earth rotation can be split into external gravitational

forces by celestial bodies acting on the Earth, excitation by geophysical fluids like atmosphere,

oceans, and hydrosphere (Gross, 2007). Geophysical processes can be subdivided into tidal mo-

tions being periodic and usually well predictable, and non-tidal effects being irregular motions

due to several types of forcing, e.g., electromagnetic, gravitational, hydrodynamic or radiational

(Schindelegger, 2013). Usually tidal motions have the same periods as their forcing mechanisms.

However, there exist free wobbles which are only dependent on the internal structure of the Earth.

Two prominent free modes are the CW and the Free Core Nutation (FCN), which are both excited

by geophysical processes.

2.2.1 Earth rotation velocity

The Earth’s rotational period is the LOD. Its variations, ∆LOD, are related to changes in Uni-

versal Time and to variations in the axial component in the Earth’s spin rate (cf. Equation 2.12)

by (Defraigne & Smits, 1999; Dehant & Mathews, 2007)

∆LOD(t)
LOD

= −m3(t) = −
∂ (UT1−UTC)

∂ t
(2.5)

where m3 is the perturbation of a constant angular velocity of the Earth.

Figure 2.2 shows observed daily LOD variations from the combined IERS C04 time series. The

Fourier spectrum (Fig. 2.2, right) was calculated using a discrete Fourier transform (FFT) and

shows the one-sided amplitude spectrum for the periods between around 6 days and 19 years. A

linear trend was removed from the time series before computing the FFT.

The LOD signal consists of following components: (1) A linear trend of 1.8 ms/century (cy)
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Figure 2.2: Observed LOD variations from the combined IERS C04 time series. The daily values
between 1962 and December 2013 are shown on the left, the corresponding amplitude spectrum
(linear trend removed) is shown on the right.

due to tidal dissipation—Lambeck (1988) states that at least 95% of the energy is dissipated in

the oceans; (2) decadal variations of a few milliseconds mostly because of core-mantle coupling

(Ponsar et al., 2003); (3) tidal variations of around 1 ms due to solid Earth, atmospheric and

oceanic tides; (4) seasonal variations of about 0.5 ms due to atmospheric and oceanic tides; and

(5) smaller variations on other timescales (Gross, 2007; Rummel et al., 2009).

Periods labeled with an M, (termonthly Mt, 9.1 days; fortnightly Mf, 13.7 days and monthly

Mm, 27.6 days) denote tidal frequencies originating from lunar attraction. The semi-annual solar

contribution at 6 months (Ssa) and the annual cycle (Sa) are solar constituents dominated by

thermal effects (Wunsch et al., 1997). The 18.61 years cycle originates from the period of the

lunar declination (Doodson & Warburg, 1941, Chapter 5).

Both for the seasonal and intraseasonal variations, atmospheric winds are the most dominant

excitation mechanisms for LOD. For the case of components between four days and one year,

about 85% of the observed variance is explained by angular momentum changes of zonal winds.

The influences of atmospheric surface pressure due to mass distributions, oceanic currents and

oceanic bottom pressure explain each 2–4% of the observed variance. Similar figures are found

for the interannual variations between one and five years, where, however, the influence of the

ocean is even smaller (Gross et al., 2004).

Due to the daily resolution of the IERS C04 LOD time series, periods < 2 days cannot be seen

in the Fourier spectrum (Fig. 2.2, right). However, there are albeit small daily and sub-daily UT1

variations which can be observed by space geodetic techniques. Chao et al. (1996) show that as

much as 90% of those diurnal and sub-diurnal UT1 variations can be explained by OTAM.

2.2.2 Orientation of the Earth rotation axis

Figure 2.3 shows observed polar motion variations from 1962 through 2013. The spectrum

shows that the signal is dominated by a yearly signal of about 80–100 mas and the CW, a free

response to equatorial torques, with a period of around 433 days and an amplitude of about

140 mas (Gross, 2000). Furthermore there exists a long term libration of the rotation pole known
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Figure 2.3: Observed polar motion variations from the combined IERS C04 time series. The daily
values between 1962 and December 2013 are shown on the left, the corresponding amplitude
spectrum (linear trend removed) with the one year and Chandler wobble period is shown on the
right.

as the Markowitz wobble at a period of 31 years with an amplitude of about 20 mas (Poma, 2000;

Vondrák, 1999). A linear trend of about 3.5 mas/year and smaller amplitudes at all measurable

timescales are observed as well (Gross, 2007).

The annual oscillation in the x and y component of polar motion is a forced wobble driven by

seasonal mass redistribution of atmosphere, oceans and hydrology (Lambeck, 1980). Leonhard

Euler discovered that a rotating body whose principal axis of inertia is not aligned with the rota-

tion axis will perform a free nutation, i.e., the rotation axis rotates around the figure axis. This

Eulerian free wobble of the Earth is called the CW (Lambeck, 1980). Since any free oscillation

in physics will undergo a damping effect, excitation mechanisms need to drive the CW. Several

authors show that the CW is excited mostly by atmosphere and oceans, especially ocean-bottom

pressure fluctuations (e.g., Brzeziński & Nastula, 2002; Gross, 2000; Liao et al., 2003).

Since polar motion is a circular and thus two-dimensional motion, it is useful to separate it

into motions of positive (prograde, in direction of the Earth’s rotation) and negative frequency

(retrograde) components (Eubanks, 1993). Prograde and retrograde amplitudes and phases are

defined by (Gross, 2007)

p(t) = px(t)− ipy(t) = Apeiαp eiσ(t−t0) + Are
iαr e−iσ(t−t0) (2.6)

where p and r indicate prograde and retrograde amplitudes and phases, respectively. σ is the

positive frequency and t0 is the reference epoch. Since the Earth rotates daily prograde, luni-
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2. Earth rotation variations

solar tides have an apparent retrograde motion and thus their frequencies are negative (Dickman,

1993).

2.3 Geophysical excitation of Earth rotation

The derivation of rigid-body dynamics can be found in literature, such as Moritz & Mueller

(1987) or Lambeck (1980). The quintessence is that the response of an applied torque L is equal

to the change of angular momentum ∂
∂ t H . Since the Earth is a more complex and dynamic system,

deformations of the Earth have to be taken into account. Furthermore, gravitational forces of the

Sun, the Moon and planets cause changes of the rotational behavior of the Earth.

Euler’s second law, in an Earth-fixed reference frame, is written as (Gross, 2007; Munk & Mac-

Donald, 1960)

L(t) =
∂H(t)
∂ t

+ω(t)×H(t), (2.7)

where L(t) are external torques, H(t) is angular momentum and ω(t) is the angular velocity of

the Earth with respect to an inertial reference frame.

The angular momentum can be split into two parts: (1) Relative angular momentum h(t) due

to relative motion of particles and (2) changes of the inertia tensor I(t) (Munk & MacDonald,

1960):

H(t) = h(t) + I(t) ·ω(t) (2.8)

Substituting Equation (2.8) into Equation (2.7) gives the Liouville equation in an Earth-fixed

reference frame:

L(t) =
∂

∂ t
[h(t) + I(t) ·ω(t)] +ω(t)× [h(t) + I(t) ·ω(t)] (2.9)

The body-fixed axes are defined so that the relative angular momentum due to motion of the

crust and mantle vanishes. This frame is called Tisserand mean-mantle frame. If this definition

is used, the relative motions of the core, the atmosphere and the ocean have a relative angular

momentum, those of the crust and mantle do not (Gross, 2007).

The deviations from uniform rotation of the Earth are small: Velocity changes are of the order

of 10−8 (a few milliseconds in LOD), polar motion changes of the order of 10−6 (several hun-

dred milliarcseconds). Thus, the Liouville equation (2.9) can be linearized with initially uniform

rotation. Then, angular velocity and inertia tensor of the Earth can be written as

ω0 =




0

0

Ω


 (2.10)
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2.3 Geophysical excitation of Earth rotation

I0 =




A 0 0

0 B 0

0 0 C


 , (2.11)

where A, B and C are the mean principal moments of inertia (A < B < C). Dynamically the

Earth is nearly axisymmetric: (B − A)/A = 2.2 · 10−5 � 1 (Gross, 2007). This allows averaging

of the equatorial principal moments of inertia A and B and replacing them by the mean value

A′ = (A+ B)/2.

Then, introducing mass displacements and relative angular momentum, the time-dependent

angular velocity and inertia tensor can be written as

ω(t) =ω0 +




m1(t)

m2(t)

m3(t)


Ω (2.12)

I(t) = I0 +∆I(t) (2.13)

By substituting Equations (2.13) and (2.12) into Equation (2.9) and neglecting products and

squares of small quantities, we obtain the Euler-Liouville equations:

ṁ1(t)
σr

+m2(t) =ψ2 +
L1(t)

Ω2(C − A)
ṁ2(t)
σr

−m1(t) =ψ1 +
L2(t)

Ω2(C − A)

ṁ3(t) = ψ̇3 +
L3(t)
ΩC

(2.14)

with the Euler frequency

σr =
�

C − A′

A′

�
Ω (2.15)

and the excitation functions ψi (Munk & MacDonald, 1960)

ψ1 =
Ωh1 + ḣ2 +Ω2∆I13 +Ω∆ İ23

Ω2(C − A′)

ψ2 =
Ωh2 − ḣ1 +Ω2∆I23 −Ω∆ İ13

Ω2(C − A′)

ψ3 =
−h3 −Ω∆I33

ΩC

(2.16)

If external torques are set to zero, the last term of the Euler-Liouville equations vanishes. The

right-hand side of Equations (2.14) consists of relative angular momentum components h(t) and
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2. Earth rotation variations

inertia tensor components ∆I as well as their time derivatives. If those values are known from

observations or models, Equation (2.14) can be solved for m(t) and ω(t) can be derived.

The two equatorial components are coupled differential equations and it is therefore conve-

nient to use complex notation as follows (Schindelegger et al., 2013)

m̂= m1 + im2

ĥ= h1 + ih2

∆ Î =∆I13 + i∆I23

ψ̂=ψ1 + iψ2

(2.17)

Without excitation, the solution of the equatorial component of Equation (2.14) is

m̂= m̂0eiσr t , (2.18)

which is a prograde, undamped circular motion of frequency σr , corresponding to the Euler

period of 2π/σr = 304.46 sidereal days (Gross, 2007).

Allowing excitation, the solutions of the Euler-Liouville equations for equatorial and axial

components are

m̂= eiσr t

�
m̂0 − iσr

∫ t

0

ψ̂(τ)e−iσrτdτ

�

m3 =ψ3 + const

(2.19)

It can be seen that in the linearized Euler-Liouville equations, the variation of the direction of

the rotation pole (m1 and m2) and the variation of the rotation velocity (m3) can be completely

separated (Eubanks, 1993; Moritz & Mueller, 1987).

Due to the existence of atmosphere and oceans and a fluid core, as well as a deformable crust

and mantle, the Earth cannot be regarded as rigid. However, if Tisserand mean-mantle frame axes

are used, there are no relative angular momentum changes of the crust and mantle. Besides if the

ocean is assumed to be in equilibrium, there are no changes of relative angular momentum due to

oceanic currents. If, furthermore, the relatively small effect of the atmosphere is neglected, only

the core contributes to relative angular momentum changes due to changes in rotation (Gross,

2007).

Smith & Dahlen (1981) show that for a both dynamically and geometrically axisymmetric

Earth, the induced relative angular momentum changes due to core motion caused by a spin of

the mantle at frequencies σ� Ω is



∆h1

∆h2

∆h3


=




E iE′ 0

−iE′ E 0

0 0 Ẽ







m1(σ)

m2(σ)

m3(σ)


 (2.20)
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2.3 Geophysical excitation of Earth rotation

where

E =
σ2

Ω
AC (2.21)

E′ = −σ(1− εC)AC (2.22)

Ẽ = −ΩCC (2.23)

to first order in the core-mantle boundary ellipticity εC . AC and CC are the equatorial and axial

principal moments of inertia of the core (Gross, 2007). The third linear equation in (2.20) shows

that the Earth’s core is decoupled in the axial component from the rotation of the mantle and can

therefore not follow changes in the rotation rate of the mantle (Wahr et al., 1981).

Changes in the Earth’s rotation also affect the Earth’s inertia tensor I . If there were no oceans

and under the assumption that the response of the Earth to centripetal potential due to rotation

changes is analogous to the nonrotating (Earth) and static (potential) case, the changes in the

Earth’s inertia tensor are



∆I13

∆I23

∆I33


= a5Ω2

3G




k2 0 0

0 k2 0

0 0 n0 +
4
3 k2







m1

m2

m3


 (2.24)

where a is the mean radius of the Earth, G is the gravitational constant, k2 is the second-degree

body tide Love number of the whole Earth (Dahlen, 1976; Gross, 2007) or of the mantle (Dickman,

2005). The change in the Earth’s mean moment of inertia due to purely radial deformations is

accounted for by n0.

Adding equilibrium oceans to the system, Equation (2.24) is modified to



∆I13

∆I23

∆I33


=




D+∆D ∆D12 ∆D13

∆D12 D−∆D ∆D23

∆D13 ∆D23 D̃







m1

m2

m3


 (2.25)

where

D =
�
k2 +∆kocn,w

� a5Ω2

3G
(2.26)

and

D̃ =
�
n0 +

4
3

�
k2 +∆kocn,s

�� a5Ω2

3G
. (2.27)

The “oceanic Love number” ∆kocn accounts for the equilibrium oceans by modifying the Love
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2. Earth rotation variations

number k2.

When the effects described in Equations (2.20) and (2.25) are applied in the Liouville equa-

tions, they become

m̂+
i ˙̂m
σcw

= χ̂ − i ˙̂χ
Ω

(2.28)

ṁ3

Ω
= − χ̇3

Ω
(2.29)

where σcw, the theoretical CW frequency, is

σcw =

�
C − A′ − D

A′m + εCAC + D

�
Ω. (2.30)

A′m = A′−AC denotes the equatorial principal moment of inertia of crust and mantle. The excita-

tion functions χi are written as

χ̂ =
ĥ+Ω

�
1+ k′2

�
∆ Î

Ω(C − A′ − D)
(2.31)

and

χ3 = kr
h3 +Ω

�
1+α3k′2

�
∆I33

ΩCm
. (2.32)

The parameter

kr =

�
1+

�
n0 +

4
3

�
k2 +∆kocn,s

�� a5Ω2

3G
1

Cm

�−1

(2.33)

accounts for rotational deformations on the axial component. Solid Earth loading is accounted for

by the use of the second-degree load Love number k′2, the factor α3 modifies k′2 due to coupling

of the core to the mantle (Dickman, 2003; Gross, 2007).

The equations above describe the response to small excitations in Earth rotation variations for

an elastic Earth with a fluid core and oceans in equilibrium. If numerical values for the constants

as well as the observed period of the CW Tcw = 434.2 sidereal days for the theoretical period are

used, the excitation functions can be rewritten (Gross, 2007):

χ̂ =
1.608ĥ+ 1.100Ω∆ Î

Ω(C − A′)
(2.34)

χ3 =
0.997h3 + 0.748Ω∆I33

ΩCm
(2.35)
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b
k

τ

Figure 2.4: Geometric principle of VLBI where the signal emitted by an extragalactic radio source
is recorded at two sites at the Earth’s surface using VLBI telescopes.

Wahr (2005) gives the following values for the coefficients in Equation (2.34) including mantle

anelasticity: 1.61− 0.02i for ĥ and 1.10− 0.01i for Ω∆ Î .

2.4 Observations of Earth rotation variations

Prior to the appearance of space geodetic techniques, Earth rotation measurements were car-

ried out using lunar occultations of stars by the Moon or star transits using optical measurements.

The terrestrial pole was observed by measuring changes in the apparent latitudes of stations

(Gross, 2007). Nowadays, VLBI, GNSS, and SLR and Lunar Laser Ranging (LLR) are the most

accurate observation techniques to monitor changes in Earth orientation (Rummel et al., 2009).

2.4.1 Very Long Baseline Interferometry

VLBI measures the difference in arrival time of a radio signal from the same extragalactic

radio source at two or more stations on the Earth. Figure 2.4 shows the basic geometric principle

of a single-baseline VLBI observation. Because of the far distance of the sources, the radio waves

arrive as planar wavefronts. Hence, the baseline vector b between the two stations, the unit vector

k pointing to the radio source and the time delay τ form the basic VLBI equation (Schuh & Böhm,

2013)

τ= −b · k
c

(2.36)

where c is the velocity of light. Atomic clocks at the stations add a precise time-stamp to the

recorded signal, allowing the derivation of the time delay by cross-correlating the signals in post-

processing.
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2. Earth rotation variations

VLBI signals are recorded at two frequencies—2.3 GHz (S-Band) and 8.4 GHz (X-Band)—to

enable first-order corrections for the effect of the ionosphere (Gross, 2007; Sovers et al., 1998).

The future VLBI2010 Global Observing System (VGOS) is designed to observe at a broader fre-

quency band between 1 and 14 GHz to avoid Radio Frequency Interference (RFI) and to signifi-

cantly improve the measurement precision (Niell et al., 2006). VLBI is “sensitive to (all) processes

that change the relative position of the radio telescopes with respect to the source” (Gross, 2007),

such as Earth orientation, station and source positions, or tropospheric parameters.

The parameter estimation process, usually a least squares adjustment, minimizes the weighted

sum of the squared residuals. Details on the least squares method can be found in Chapter 6. The

theoretical delay is calculated from a delay model which requires some prior information about

the parameters. Sovers et al. (1998) divide the delay model into three categories: (1) Geometric

delay being by far the largest component and including effects such as station positions and dis-

placements due to tectonic motions or tidal effects, Earth orientation, or source parameters; (2)

atmospheric delay, describing the behavior of the signal if not in vacuum and (3) instrumental

delay.

Due to the essentially fixed radio sources, VLBI is uniquely able to provide unambiguous and

stable ties between the terrestrial and celestial reference frame (Blewitt, 2007). It is the only

technique that allows the estimation of all five EOP (Schuh & Böhm, 2013). All other techniques

can derive only a subset or a linear combination of the EOP or their time derivatives (Gross,

2007; Rummel et al., 2009), making VLBI the premier measurement technique for determining

the International Celestial Reference Frame (ICRF), precession-nutation and UT1−UTC (Eubanks,

1993).

2.4.2 Global Navigation Satellite Systems

Global satellite systems emitting microwaves for the purpose of positioning, timing, and

navigation are summarized as GNSS. The three major GNSS are the GPS of the United States,

the Russian Globalnaja Nawigazionnaja Sputnikowaja Sistema (GLONASS) and the European

Galileo system (Hofmann-Wellenhof et al., 2008). The satellites at altitudes of around 20000 km

transmit modulated signals at two carrier frequencies in the L-Band (for the case of GPS:

L1 = 1575.42 MHz and L2 = 1227.60 MHz), allowing to measure the distance to at least four

satellites from a terrestrial receiver and thus to estimate the receiver’s position.

Least squares adjustment and Kalman filter algorithms are typical tools for the post-processing

analysis of GNSS observations. Several instrumental corrections—both satellite- and receiver-

related—have to be applied and atmospheric propagation effects have to be considered. Other

effects, such as the number of full phase cycles, are estimated together with station positions,

satellite orbits and EOP. In order to estimate precisely the unknown parameters, a priori models

are required and processing strategies, such as building linear combinations or differences in

order to eliminate parameters, are applied (Steigenberger, 2009).

Due to the possibility of continuous measurements, the large number of observations, and
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the dense ground network, GNSS plays a decisive role in the realization of the ITRS and in

monitoring the atmosphere and the Earth rotation parameters (Angermann et al., 2013; Ble-

witt, 2007; Dick & Thaller, 2014). The GNSS solution of polar motion shows a roughly five times

smaller precision than the one from VLBI when comparing them to the IERS combined solution

(Dick & Thaller, 2014). But one has to bear in mind the much larger weight of GNSS in those

combined time series. The accuracy of polar motion estimates are given as 30 µas (IGS, 2013),

VLBI-derived polar motion estimates can be as accurate as 50–80 µas (Schuh & Böhm, 2013).

However, only polar motion and its time derivative can be determined independently from

GNSS. UT1 cannot be separated from the satellite orbit since it is correlated with the right ascen-

sion of the ascending node of the satellite and also nutation cannot be determined solely from

GNSS (Gross, 2007; Steigenberger, 2009). Although nutation and UT1 cannot be derived in an

absolute sense, their time derivatives—being related to orbital elements—can be determined us-

ing satellite techniques (Rothacher et al., 1999). Hence, GNSS provides the rates of UT1, i.e., LOD

for the combined C04 EOP time series of the IERS (Dick & Thaller, 2014). However, it should be

pointed out that mismodeling in GNSS analysis, e.g., mismodeling of the radiation pressure, may

lead to biases in the polar motion estimates which could not be seen in a GNSS-only validation

(Rothacher et al., 2001; Springer et al., 1999).

2.5 High-frequency models for Earth rotation variations

A priori ERP models are required to reduce the observables of space geodetic techniques

in order to accurately estimate geodetic or geophysical parameters in the analysis (Sovers et al.,

1998; Steigenberger, 2009). The accuracy of these models is even more important in cases where

parameters are not estimated but fixed to their a priori values. This is required for example in

VLBI Intensive sessions. Those one-hourly, single-baseline VLBI experiments, providing near real-

time estimates of UT1−UTC, contain about 20–30 observations (Haas et al., 2010) and—due to

low number of observations and poor network geometry—do not allow the estimation of ERP.

However, the current standard—the IERS Conventions 2010 model—is not accurate enough

to fulfill the future Global Geodetic Observing System (GGOS) requirements, as described in Plag

et al. (2009) (Artz, 2011).

One approach to derive an a priori high-frequency ERP model is to use observations from space

geodetic techniques and fitting the tidal amplitudes to the residuals. Such empirical models have

been derived from VLBI (e.g., by Artz et al., 2011; Gipson, 1996; Herring & Dong, 1994), GPS

(e.g., by Rothacher et al., 2001), and SLR (e.g., by Watkins & Eanes, 1993) observations. A GPS-

VLBI combined empirical model has been derived by Artz et al. (2012). Recent empirical models

agree to a level of 7.5 microarcseconds (µas) in polar motion and 0.5 microseconds (µs) in UT1

for most tidal constituents (Artz et al., 2011). However, empirical models bear the danger of

simply covering signals in the (sub-)diurnal band. Additionally, they do not allow the study and

separation of different geophysical effects.
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2. Earth rotation variations

High-frequency ERP models can also be derived from ocean tide models as ocean tides cause

the most important excitations at those periods (Nilsson et al., 2010; Ray et al., 1994). ERP models

based on ocean tides provide a more independent source, making them preferable to empirical

models. The standard model recommended by the IERS Conventions 2010 is one example of this

model type. Several other authors have developed other ERP models based on ocean tides, e.g.,

Chao & Ray (1997), Dickman (1993), or Gross (1993).

19





Chapter 3

Ocean tides

3.1 Observations of the ocean surface

Most of the recent ocean tide models comprise observations of the ocean surface, such as

the series of FES models (Le Provost et al., 1998). There exist purely hydrodynamic models

mainly being driven by gravitational forces, e.g., by Seiler (1991) or a newer model by Müller

et al. (2012). Those models, however, are less accurate than observation-based models (Stammer

et al., 2014, p. 266) and thus not suitable for the derivation of accurate ERP prediction values.

Sea surface observations using direct measurements have a long history, especially at coastal

regions (Pugh & Woodworth, 2014). However, even when offshore measurements are included,

the spatial distribution over the oceans is sparse. Global observations became only available after

the first operational satellite altimetry missions. ERS-1, launched in 1991 and operated by the

European Space Agency (ESA), was the first operational satellite with a radar altimetry device on

board. In 1992, the TOPEX/Poseidon mission started as an US and French cooperation. It was

dedicated to sea surface measurements with an accuracy of less than 5 cm. Since then, several

satellite missions were launched and the technique of satellite altimetry improved greatly. Today,

more than two decades of observations are available allowing the derivations of models which

mutually agree better than 1 cm in the open ocean (Stammer et al., 2014).

The global coverage, the time-span of observations, and improved correction models and

calibration of satellite altimetry allow a pure empirical estimation of ocean tides (Mayer-Gürr

et al., 2012; Ray, 1999). Empirical models have shown to perform similar to hydrodynamic

assimilation models (Ray et al., 2011). However, the coverage of satellite altimetry is not exactly

global as there are no observations at higher latitudes than the satellite orbit’s inclination. The

inclination of the TOPEX/Poseidon and Jason missions is 66◦.
Altimetry devices on satellites typically emit radar pulses in two frequency bands, e.g., in

C-band (5.3 GHz) and Ku-band (13.6 GHz) for the TOPEX/Poseidon and Jason missions. Mea-

surements of the altimeter range, i.e., the distance between the satellite and the ocean surface,

are usually averaged over one second. If the height of the satellite is known, the sea surface height

(SSH) can be obtained. The mean height of the satellites is between 700 and 1400 km, which is
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r
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d

Figure 3.1: Illustration of the tidal force acting on a point on the Earth surface due to a celestial
body.

a compromise between several factors, such as atmospheric drag, influence of the gravity field,

power requirements, and exposure to radiation (Pugh & Woodworth, 2014). A short repeat pe-

riod (9.9 days for TOPEX/Poseidon and Jason; 35 days for the ESA missions) is at the expense of

a good spatial resolution: The track separation of TOPEX/Poseidon and Jason is 316 km whereas

for the ESA missions it decreases to 80 km.

The altimeter range has to be corrected for atmospheric delays and geophysical effects as

well as instrumental biases. Another offset between the apparent and the real ocean surface

is the sea state bias (SSB). It consists of (1) the electromagnetic bias, stemming from the fact

that backscatter is larger from troughs than from crests of a wave inside the footprint and, thus,

making the range too long; and (2) the skewness bias, being the difference between the mean

and the median scattering surface. The skewness bias is primarily dependent on the significant

wave height (SWH). After applying all corrections, the SSH can be averaged to define a mean sea

level (Pugh & Woodworth, 2014).

3.2 Tide generating forces

Tides are periodic motions of the solid or fluid parts of the Earth due to inhomogeneous

potential fields across the Earth arising from celestial bodies. These forces as well as induced tidal

deformations and incremental centrifugal forces are the major contributors of periodic changes

of Earth rotation.

After Newton’s law of gravitation, the acceleration acting on a point caused by a celestial body

is

aP =
GMcel

d2

rcel − rP

d
(3.1)

where G is the gravitational constant, Mcel is the mass of the celestial body, rcel and rP are the

position vectors of the center of mass of the celestial body and the point, respectively, and d =

|rcel − rP | is the distance between those points. The difference illustrates the notion of the tidal

force being a differential one (Agnew, 2007).
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3. Ocean tides

Instead of the gravitational force field (vector field), the gravitational potential field (scalar

field) is commonly used to represent the gravitational effect of the celestial bodies. The grav-

itational force on a unit mass element is given by the gradient of the gravitational potential,

fg = −∇Vg . For a point on the Earth’s surface it can be written as (Agnew, 2007)

Vg =
GMcel

d
=

GMcel

r

�
1+

R2
E

r2
− 2

RE

r
cosψ

�− 1
2

, (3.2)

where RE is the radius of the Earth, r is the distance from the Earth center to the center of mass

of the celestial body and ψ is the geocentric angle between the point on the Earth’s surface and

the center of mass of the celestial body.

The brackets term in Equation (3.2), i.e., the reciprocal distance, can be expanded into a series

of Legendre polynomials (Pugh & Woodworth, 2014):

Vg =
GMcel

r

�
1+

RE

r
P1(cosψ) +

R2
E

r2
P2(cosψ) +

R3
E

r3
P3(cosψ) + . . .

�
=

=
GMcel

r

∞∑
n=0

�
RE

r

�n

Pn(cosψ),
(3.3)

where Pn(cosψ) are Legendre polynomials. The first term (degree n = 0) in Equation (3.3) is

constant except for variations in r, and thus produces no force. The second term (n= 1) produces

a constant force along the orbital direction which must be subtracted to get the tidal force, and,

hence, the time-dependent tidal potential can be written as (Agnew, 2007)

Vtid(t) =
GMcel

r(t)

∞∑
n=2

�
RE

r(t)

�n

Pn(cosψ). (3.4)

The degree-two term (n= 2) in Equation (3.4) is the main tide-producing term, containing about

98% of the total tidal potential (Torge & Müller, 2012).

Normalizing the tidal potential, i.e., setting the value of the Moon to 1, the effect of the Sun

is 0.46, that of Venus 5 · 10−5 and that of Jupiter 6 · 10−6. Hence, the “lunisolar” tides have by

far the biggest effect and are probably the only ones measurable (Agnew, 2007). Since RE
r ≈ 1

60

for the Moon, the sum in Equation (3.4) decreases rapidly. This allows to neglect terms n≥ 4 for

most purposes (Pugh & Woodworth, 2014).

The geocentric angle ψ can be expressed by Earth-fixed coordinates using spherical co-

ordinates of the point (latitude ϕ, longitude λ) and the celestial body (ϕ′, λ′) so that

(Moritz & Mueller, 1987)

cosψ= sinϕ sinϕ′ + cosϕ cosϕ′ cos(λ−λ′) (3.5)
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and the spherical harmonic expansion of the tidal potential can be written as

Vtid(t) =
GMcel

r(t)

∞∑
n=2

��
RE

r(t)

�n n∑
m=0

�
(2−δ0m)

(n−m)!
(n+m)!

Pnm(sinϕ)Pnm(sinϕ
′) cos m(λ−λ′)

��

(3.6)

where δ0m = 1 if m = 0, otherwise 0, and Pnm are unnormalized associated Legendre functions

which are defined by (Lambeck, 1980; Teschl, 2014)

Pnm(x) = (−1)m
�
1− x2

�m/2 dm

d xm
Pn(x) (3.7)

where

Pn(x) =
1

2nn!
dn

d xn

�
x2 − 1

�n
. (3.8)

are Legendre polynomials of degree n. Up to n= 3 they are given explicitly by

P00 = 1 (3.9)

P10 = sinϕ P11 = cosϕ (3.10)

P20 =
3
2

sin2ϕ − 1
2

P21 = 3 cosϕ sinϕ P22 = 3cos2ϕ (3.11)

P30 =
5
2

sin3ϕ − 3
2

sinϕ P31 = cosϕ
�

15
2

sin2ϕ − 3
2

�
P32 = 15 cos2ϕ sinϕ P33 = 15 cos3ϕ

(3.12)

The terms

Cnm(ϕ,λ) = Pnm(sinϕ) cos(mλ)

Snm(ϕ,λ) = Pnm(sinϕ) sin(mλ)
(3.13)

are spherical harmonics. Those functions are defined on a sphere and used to represent or ap-

proximate spherical functions. Similar to Fourier series in one dimension, any two-dimensional,

quadratically integrable function on a sphere can be expanded into a series of spherical harmonics.

The spherical harmonic representation of scalar potentials is a common application of spherical

harmonics in geosciences (Freeden & Schreiner, 2009).

An illustration of spherical harmonics of degree n = 2 to n = 4 is shown in Figure 3.2. The

actual basis functions are, however, not block functions with only positive (black) and negative

(white) values, but harmonic functions. The black/white alternation in Figure 3.2 only illustrates

the frequency behavior with different degrees n and orders m. Three basic types of spherical

harmonics can be distinguished. (1) Zonal harmonics (m = 0), being symmetric about the ro-

tation axis, represent long-period components of the tidal spectrum, ranging from a few days to

several years (Moritz & Mueller, 1987). In that frequency spectrum, zonal harmonics can change

the polar moment of inertia and thus can only lead to changes in UT1 (rotation speed). Gross
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Figure 3.2: Illustration of some spherical harmonics.

(2007) shows, however, that the ocean’s response to zonal harmonics can excite polar motion

because of the uneven land-ocean distribution on Earth. The zonal spherical harmonics of the

tidal potential of degree 2 include implicitly only the declination of the celestial body. The main

period of the dominant degree 2-term Vtid,20, is half the orbital period (14 days for the Moon,

around half a year for the Sun); (2) Tesseral harmonics (0 < m < n) are latitude and longitude

dependent and cause tidal forcing in the diurnal frequency band; (3) Sectorial harmonics (m=n)

have semi-diurnal periods since they vary with 2λ′, and affect Earth rotation, e.g., through tidal

friction (Böhm, 2012; Torge & Müller, 2012).

For the case of solid Earth tides, there is an equivalence of perturbing tidal term, spherical

harmonic of the deformation field and, thus, resultant ERP. Because of the complexity of ocean

dynamics, the irregular continental shape and the bathymetry, this does not hold for the case of

ocean tides. One tidal potential term (degree n, order m) generates ocean tides of other spherical

harmonics than that of same degree and order as well (Dehant & Mathews, 2015, p. 253).
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The three degree-two tidal potential components are given as

Vtid,20 = GMcel
R2

E

r3
cel

P20(sinϕ)P20(sinϕ
′) (3.14)

Vtid,21 =
1
3

GMcel
R2

E

r3
cel

P21(sinϕ)P21(sinϕ
′) cos(λ−λ′) (3.15)

Vtid,22 =
1

12
GMcel

R2
E

r3
cel

P22(sinϕ)P22(sinϕ
′) cos2(λ−λ′). (3.16)

3.3 Astronomical arguments

If the tidal potential is calculated using Equation (3.6), terrestrial coordinates of the celestial

bodies are required. Celestial orbits, on the other hand, can also be expanded into a harmonic

series where they vary linear in specific angles. Several tidal potential catalogs have been pub-

lished using the expansion of celestial arguments, such as the HW95 catalog (Hartmann & Wen-

zel, 1995). The largest tides of this catalog are presented in Table 3.3. Tidal potential catalogs

consist of thousands so-called partial tides, which are spectral components at certain frequencies.

Available catalogs differ in their expansion of the tidal potential and their use of astronomical vari-

ables. Each partial tide usually consists of an amplitude and an angle argument. The potential

amplitudes of the tidal constituents in the diurnal and semi-diurnal frequency bands are shown

in Figure 3.3. The angle argument φ j(t) is expressed as a linear combination of the astronomical

variables Fi using integer coefficients Ni j . Each set of these integer multipliers characterizes a

particular partial tide, denoted with subscript j. Three variables are required for the lunar orbit,

two for the solar orbit. A sixth variable is required to define the time. The angle argument can

be calculated using (Beutler et al., 2005)

φ j(t) =
6∑

i=1

Ni j Fi(t). (3.17)

Each partial tide contains a constant phase and the frequency is given by the time derivative of

Equation (3.17).

Two commonly used sets of astronomical arguments are briefly presented hereafter. Doodson

(1921) introduced six independent variables (see Table 3.1) describing relative positions of the

Sun and the Moon with respect to the Earth. This set is commonly used by oceanographers. Three

of these Doodson variables, s, p and N ′, specify the apparent lunar orbit, two of them, h and p1,

specify the apparent solar orbit, and τ relates the local observer to the hour angle of the Moon.

Numerical values of the Doodson arguments (Table 3.1) can be calculated using (Doodson,
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Figure 3.3: Tidal potential amplitudes in m2/s2 from the HW95 tidal potential catalog in the semi-
diurnal (periods around 12 hours, left) and diurnal (periods around 24 hours, right) range. Top
figures show all tidal constituents in logarithmic scale, lower figures show details of the respective
grey band in linear scale, i.e., the eight largest tides for each band. Note: The K1 and K2 tides
consist of a lunar and a solar constituent, in the upper figure they appear as two partial tides, in
the lower figure their amplitudes are summed up.

Table 3.1: Doodson arguments (Doodson, 1921).

Symbol Period Definition

τ 1.03505 days Local mean lunar time

s 27.32158 days Mean longitude of the Moon

h 1 year Mean longitude of the Sun

p 8.85 years Longitude of the perigee of the Moon

N ′ = −Ω 18.61 years Ω is the longitude of the ascending node of the Moon

p1 20940 years Longitude of the perigee of the Sun
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3.3 Astronomical arguments

Table 3.2: Fundamental (Delaunay) arguments (Petit & Luzum, 2010).

Symbol Period Definition

F1 ≡ l 27.53 days Mean anomaly of the Moon

F2 ≡ l ′ 365.25 days Mean anomaly of the Sun

F3 ≡ F = L −Ω 27.21 days L is the mean longitude of the Moon

F4 ≡ D 29.53 days Mean elongation of the Moon from the Sun

F5 ≡ Ω 18.61 years Mean longitude of the ascending node of the Moon

γ= GMST+π 0.99727 days Greenwich mean sidereal time + π

1921)

τ= 15◦ t + h− s− L,

s = 277.0248◦ + 481267.8906◦T + 0.0020T2+···,

h= 280.1895◦ + 36000.7689◦T + 0.0003T2+···,

p = 334.3853◦ + 4069.0340◦T − 0.0103T2+···,

N ′ = 100.8432◦ + 1934.1420◦T − 0.0021◦T2+···,

p1 = 281.2209◦ + 1.7192◦T + 0.0005◦T2+···

(3.18)

where T is Julian centuries (36525 mean solar days) since January 1, 1900 (midnight), t is

Greenwich mean solar time, and L is the longitude of a point.

Since the multiplier coefficient of τ is always positive and those of the other arguments are

usually within the range -4 to 4, A. Doodson proposed the Doodson numbers to avoid negative

coefficients as follows

d j = N j + [0 5 5 5 5 5]T . (3.19)

The semi-diurnal lunar tide M2, for example, has the integer multipliers for the Doodson argu-

ments [2 0 0 0 0 0], being equivalent to a Doodson number of 255.555.

An alternative expression of astronomical variables, commonly used in geodesy, are the fun-

damental arguments of precession, nutation and Greenwich mean sidereal time, also known as

Delaunay variables (Table 3.2, Beutler et al., 2005). The angle arguments are calculated in an

analogous manner as for the Doodson arguments (cf. Equation 3.17).

Both sets of astronomical arguments are equivalent and they can be converted by a linear

transformation. If the set of Doodson arguments is denoted by β and the Fundamental (Delaunay)
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3. Ocean tides

arguments (including γ) by F , then (Gipson, 1996)

F =




0 0 0 −1 0 0

0 0 0 0 0 −1

−1 1 1 1 0 1

0 0 −1 0 0 −1

−1 1 1 1 −1 1

1 0 0 0 0 0




β β =




0 0 0 0 0 1

1 0 1 1 0 1

0 1 0 −1 0 0

−1 0 0 0 0 0

0 0 1 0 −1 0

0 −1 0 0 0 0




F. (3.20)

3.4 Dynamic and equilibrium theory

The tidal potential, as discussed in the previous section, is the main driving force of ocean tides

although several other mechanisms, such as ocean bottom friction, Coriolis force, dissipation,

ocean bottom topography, atmospheric pressure forcing, or the distribution of land masses have

an effect on ocean tides as well. Two different theories describing the reaction of the ocean due

to tidal forcing have been developed.

The equilibrium theory neglects the aforementioned effects and is thus mainly of historical

interest. However, also modern theories use the phase referencing with respect to the astronom-

ical arguments. It has been developed by Newton and states that the ocean water covering the

whole Earth forms a surface in static equilibrium with the tidal potential of a celestial body,

ζE =
Vtid

g
. (3.21)

After the initial adjustment of water masses, the two bulges (cf. Figure 3.1) follow the direction to

the celestial body due to the rotation of the Earth. The theory considers only mass displacement

without making allowance for movements or currents of the water which is why the equilib-

rium theory cannot reflect reality (Sverdrup et al., 1942, p. 551). Including the oceanic currents

would be particularly important for short period tides as equilibrium tidal theory is applied for

long-period tides. Furthermore, the equilibrium theory cannot explain extreme tidal ranges of

more than 10 m in shelf sea areas as equilibrium tides have amplitudes of less than half a meter

(Pugh & Woodworth, 2014, cf. Table 3.3).

The dynamic theory of tides was introduced by Laplace and has replaced the equilibrium

theory. It is based on the fact that horizontal forces are important for the movement of water.

The type of motion due to periodic horizontal forces will be long waves having the same peri-

ods. The dynamic equations (4.1) are complex and include additional conditions for ocean tides

such as continuity and momentum balance, the response of the ocean basins, ocean bottom fric-

tion, boundary conditions, or the elastic response of the solid Earth (Pugh & Woodworth, 2014;

Sverdrup et al., 1942).

Isobaric levels, i.e., levels of constant pressure, are generally inclined to isopycnal levels of
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3.4 Dynamic and equilibrium theory

Table 3.3: Ten largest tidal harmonics of long-period, diurnal and semi-diurnal
tides. Equilibrium amplitudes in millimeters are shown in column one. The second
column shows normalized amplitudes relative to M2. Tidal amplitudes are taken
from the HW95 catalog (Hartmann & Wenzel, 1995; Pugh & Woodworth, 2014).

Amplitude Name Doodson Nr. Period Origin

Lo
ng

-p
er

io
d

ti
de

s
(m
=

0)

135 0.56 M0 055.555 permanent Lunar permanent

62 0.26 S0 055.555 permanent Solar permanent

42 0.17 Mf 075.555 13.66 d Lunar semi-monthly

22 0.09 Mm 065.455 27.55 d Lunar monthly

19 0.08 Ssa 057.555 182.62 d Solar semi-annual

18 0.07 055.565 6798 d

17 0.07 M′f 075.565 13.63 d

8 0.03 Mtm 085.455 9.13 d Lunar termensual

4 0.02 MSm 063.655 31.81 d

4 0.02 MSf 073.555 14.77 d Lunisolar semi-monthly

D
iu

rn
al

ti
de

s
(m
=

1)

101 0.41 O1 145.555 25.82 h Lunar principal

97 0.40 K1 165.555 23.93 h Lunar principal

47 0.19 P1 163.555 24.07 h Solar principal

45 0.18 K1 165.555 23.93 h Solar principal

19 0.08 Q1 135.655 26.87 h Lunar elliptical

19 0.08 K′1 165.565 23.93 h

19 0.08 O′1 145.545 25.82 h

8 0.03 J1 175.455 23.10 h Lunar elliptical

8 0.03 M1 155.655 24.83 h Lunar smaller elliptical

4 0.02 OO1 185.555 22.31 h Lunar second-order

Se
m

i-d
iu

rn
al

ti
de

s
(m
=

2)

243 1.00 M2 255.555 12.42 h Lunar principal

113 0.46 S2 273.555 12.00 h Solar principal

47 0.19 N2 245.655 12.66 h Lunar larger elliptical

21 0.09 K2 275.555 11.97 h Lunar declinational

10 0.04 K2 275.555 11.97 h Solar declinational

9 0.04 K′2 275.565 11.97 h

9 0.04 M′2 255.545 12.42 h

9 0.04 ν2 247.455 12.63 h Larger evectional

7 0.03 µ2 237.555 12.87 h Variational

7 0.03 L2 265.455 12.19 h Lunar smaller elliptical

Ter-diurnal tides (m= 3)

3 0.01 M3 355.555 8.28 h Lunar parallax
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3. Ocean tides

constant density. Then, the flow varies with depth since density varies with depth and hori-

zontal position (Stewart, 2008, p. 163). Such a depth-dependent flow is called baroclinic flow.

Barotropic flow, on the other hand, is independent of depth. Depth-averaged flow is commonly

used in short period ocean tide models and usually also referred to as barotropic. Assimilation

models typically incorporate depth-averaged equations, which are valid from shortest time-scales

up to several weeks (Carrère & Lyard, 2003).

3.5 Non-gravitational tides

The linear response of the ocean to tidal forcing as described in the previous sections is the

gravitational tide. The tidal potential is well known for a large number of tides and, using the

response method (see Section 5.1 for details), one can relate the potential of celestial objects to

tidal heights. However, for some tidal constituents, e.g., S1, µ2, L2, S2, and M2, harmonic analyses

find significant discrepancies between observed tidal heights and what is expected from potential

catalogs. Two effects, additional to gravitational forcing, changing the height of the ocean surface

are radiational tides and non-linear effects (Pugh & Woodworth, 2014, p. 80). The fact that the

response method allows the separation of the gravitational part from measured tidal elevations,

makes this method such a powerful tool.

Radiational tides

A part of the change of the ocean surface is due to solar heating. An approximation of this

effect, called radiational tide by Munk & Cartwright (1966), is the input radiation (Agnew, 2007).

Thus, the radiational tides appear at solar tidal frequencies. In the diurnal and sub-diurnal fre-

quency range, the most prominent radiational tides are the S1 and S2 tides, at which solar heating

contributes significantly to their tidal heights. Both radiational ocean tides S1 and S2 are driven

by atmospheric processes, i.e., air pressure loading and winds (Ponte, 1994). There is actually

no equilibrium tide for S1 tide, but a small term close to S1 which cannot be separated from the

24 hours period of S1 (Pugh & Woodworth, 2014, p. 122). The tidal height of S1, mostly driven

by atmospheric pressure loading, reaches amplitudes of 2 cm or even more in isolated areas.

However, it is less than 1 cm for the most part of the global ocean (Ray & Egbert, 2004).

Also the semi-diurnal S2 tide has a radiational part, however smaller compared to its gravita-

tionally driven tidal height. As a global average, Arbic (2005) finds an atmospherically driven S2

tidal height of 14.7% of the gravitational tide and a phase lag of 109.4◦.

Even though the physics of the solar heating process is complicated, response analysis allows

an approximation of the radiational tide by using the input radiation potential. This is zero during

night time and during days roughly proportional to cos (εSun), where εSun is the elevation of the

Sun (Agnew, 2007; Pugh & Woodworth, 2014).
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3.6 Ocean tide models

Non-linear effects

Non-linear effects are mostly important at coastal regions and in areas of shallow water. There,

non-linear physical effects become relevant for the progression of tidal waves. These processes,

such as bottom friction, depend on higher orders of the amplitude of the tidal height. Such non-

linearities are visible in the time-series of, e.g., tidal height observations. They appear as harmonic

variations with frequencies which are differences, multiples, and sums of the non-disturbed, astro-

nomical tidal harmonics (Pugh & Woodworth, 2014). For example, the two largest semi-diurnal

tides, M2 and S2, have frequencies ωM2
≈ 0.00805◦/s and ωS2

≈ 0.00833◦/s. If the square of

the sum of M2 and S2 is considered, additional harmonic constituents appear as follows: The

square of the two cosine functions produce harmonic signals with twice the respective frequen-

cies, ωM4
= 2ωM2

and ωS4
= 2ωS2

, i.e., the tidal constituents M4 and S4. Another non-linear

tide in this frequency band, MS4, arises at frequency ωMS4
= ωM2

+ωS2
. The long-period tide

MSf at frequency ωMSf
=ωS2

−ωM2
has a period of 14.77 days (see Table 3.3). To include other

non-linear tides, the process described above needs to be continued for other combinations of

tidal constituents and also higher powers. If tidal heights in shallow water regions are modeled

in practice, a large number of combinations is necessary (Pugh & Woodworth, 2014).

3.6 Ocean tide models

Three types of ocean tide models can be distinguished. Pure hydrodynamic models solve

dynamic equations to derive tidal heights and currents consistent with prescribed physics. If ob-

servations of the ocean surface elevation are used to constrain the hydrodynamic equations, e.g.,

from satellite altimetry or tide gauge observations, the hydrodynamic models are called assimila-

tion models. The third group of models are empirical models which are based only on observations

of the surface variability without deploying any hydrodynamic equations. The empirical models

therefore only include information about tidal heights but not about tidal currents. The major

part of this study deals with the derivation of tidal currents from tidal heights as they are not part

of empirical models but play an important role for ERP prediction.

The tidal height of the ocean surface is usually given separately for n harmonic constituents.

The total height can be calculated by their sum,

ζ(ϕ,λ, t) =
∑

n

An(ϕ,λ) cos(ωn t +χn − gn(ϕ,λ)) (3.22)

where ϕ and λ denote the spherical coordinates latitude and longitude, An and gn are tabulated

amplitudes and phase lags with respect to the equilibrium tide maximum, ωn is the angular

velocity of the tidal constituent and t is time. χn is an additional angle according to the Doodson-

Warburg phase convention. It can be calculated from the sine- and cosine coefficients, C0 and S0,
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3. Ocean tides

Table 3.4: Tidal constituents included in selected ocean tide models. The second column gives
the number of constituents for each model.

Model # Tides included in model

GOT4.8 12 Sa, Ssa, Mf, Q1, O1, P1, S1, K1, N2, M2, S2, K2

EOT11a 13 Mm, Mf, Q1, O1, P1, S1, K1, 2N2, N2, M2, S2, K2, M4

HAMTIDE11a 9 Q1, O1, P1, K1, 2N2, N2, M2, S2, K2

FES2012 33 Z0, Ssa, Mm, MSf, Mf, Mtm, Q1, O1, P1, S1, K1, J1, E2, 2N2, µ2, N2, ν2,

M2, MKS2, λ2, L2, T2, S2, R2, K2, M3, N4, MN4, M4, MS4, S4, M6, M8

of the tidal potential,

χn =





−90◦ diurnal: C0 or S0> 0

0 long-period: C0 or S0< 0, semi-diurnal: C0 or S0> 0

90◦ diurnal: C0 or S0< 0

180◦ long-period: C0 or S0> 0, semi-diurnal: C0 or S0< 0

(3.23)

or, equivalently, from the astronomical amplitudes H f (Petit & Luzum, 2010, Table 6.6).

Nodal corrections and admittance approach

If the observation period of the ocean surface is long enough and an ocean tide model consists

of all significant harmonic tidal constituents, the tidal variation of the ocean surface would be well

represented by Equation (3.22). However, since that is not the case, the principal lunar tides are

modulated by the 18.6 years period of the ascending node and the 8.85 years period of the perigee

of the Moon. To account for this modulation, two nodal correction parameters are applied to the

harmonic function. Nodal factors fn(t) are multipliers for the amplitudes, and nodal angles us(t)

are added to the cosine argument. For solar constituents, the amplitude factor is one and the

additional angle is 0.

Usually only a limited set of partial tides are included in current ocean tide models. An

overview of available tides in the ocean tide models mentioned in the following section is given

in Table 3.4. All others cannot be significantly identified in the tidal analysis. Hence, both minor

tides and side lobes have to be accounted for. Minor tides are interpolated by admittance theory,

assuming that the ratio of tidal heights and tidal potential is a slowly varying function of frequency

(Munk & Cartwright, 1966). The admittance approach is explained in more detail in Section 5.1.

The current velocities of an ocean tide model are given as periodic variations in eastward

and northward direction un and vn, similarly to the variation of the tidal height (Equation 3.22).

Instead of current velocities, volume transport, i.e., velocity multiplied by ocean depth D can be
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3.6 Ocean tide models

used to represent the flow of the ocean,

Un = un · D
Vn = vn · D.

(3.24)

Current ocean tide models

The following gives a brief overview about global ocean tide models being related to this

work either because they are used as input or for comparison or because they have been derived

similarly. All models but EOT11a contain barotropic oceanic currents. Most information of this

section are taken from Stammer et al. (2014).

GOT4.8

The Goddard Ocean Tide model should be mentioned here because the volume transports

of GOT are derived similarly as in the present work. The tidal heights result from an empirical

tidal analysis of several altimeter missions adopted to a prior FES model (Ray, 1999). Barotropic

current velocities were derived from a least-squares solution of the momentum and continuity

equations as mentioned in Ray (2001). The resolution of the model is 0.5◦.

EOT11a

The empirical solution being closely related to this work is the global ocean tide model devel-

oped at Deutsches Geodätisches Forschungsinstitut (DGFI). It is based on altimetry observations

from Topex, Jason-1, Jason-2, ERS-2 and Envisat. This model also uses the FES solution as refer-

ence model. Outside the latitude range ±81.5◦ EOT11a falls back to tidal heights from FES2004.

The model applies relative weighting and specific offsets for different missions in order to consider

differences in hardware and accuracies. In addition to the eight major tides, EOT11a consists of

2N2, S1, M4 and the long-term constituents Mm and Mf. The spatial resolution is 0.125◦ or 7.5

arc-minutes (Savcenko & Bosch, 2012).

HAMTIDE11a

The assimilation model from the University of Hamburg is the predecessor of HAMTIDE12

and based on hydrodynamic equations and data assimilation (Taguchi et al., 2014). The grid is

equal to the FES2004 grid, tidal heights from EOT11a were assimilated between latitudes +74◦

and −84◦.

FES2012

Another assimilation model being related to this work is the 2012 version of the finite el-

ement tidal solution (FES) model (Carrère et al., 2012). Being the successor of the FES2004
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Figure 3.4: Tidal height variations from the hydrodynamic ocean tide model HAMTIDE11a for
partial tides K1 (upper plots) and M2 (lower plots). Amplitudes (left) are given in centimeters,
phases (right) are given in degrees.

(Lyard et al., 2006), FES2012 is derived from shallow water equations assimilated mainly by

data from Topex/Poseidon, Jason-1, and Jason-2 missions. Further data sources were used in

regions showing small scale patterns and the Arctic. The resolution of the unstructured grid is

0.0625◦ or 3.75 arc-minutes.

3.7 Ocean tidal effects on Earth rotation

The angular momentum approach is based on the balance of the angular momentum of the

Earth and the angular momentum of the oceans (and other fluids; Wahr, 1982). Thus, the total

OTAM is of the same magnitude as the angular momentum of the solid Earth but of opposite sign

to conserve the angular momentum of the system (McCarthy & Seidelmann, 2009, p. 276).

Under angular momentum conservation, any mass redistribution on the Earth excites Earth

rotation variations (Chao & Ray, 1997). Changes in polar motion and LOD are excited by two

mechanisms (cf. Equations 2.31 and 2.32): (1) Mass redistribution, changing the inertia tensor

∆I , usually referred to as mass term; (2) motion relative to the rotating reference frame changing

the relative angular momentum h, usually referred to as motion term (Gross, 2007; Munk & Mac-

Donald, 1960). The mass term is represented by the tidal heights of the ocean surface, the motion
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3.7 Ocean tidal effects on Earth rotation

term arises from oceanic currents. The OTAM for each frequency are computed by integration

using (Chao & Ray, 1997)

H1(ω) =− R4
EρΩ

∫∫
ζ(ω) cos2ϕ sinϕ cosλ dλ dϕ

+ R3
Eρ

∫∫
(V (ω) sinλ− U(ω) sinϕ cosλ) cosϕ dλ dϕ

(3.25)

H2(ω) =− R4
EρΩ

∫∫
ζ(ω) cos2ϕ sinϕ sinλ dλ dϕ

− R3
Eρ

∫∫
(V (ω) cosλ+ U(ω) sinϕ sinλ) cosϕ dλ dϕ

(3.26)

H3(ω) = R4
EρΩ

∫∫
ζ(ω) cos3ϕ dλ dϕ

+ R3
Eρ

∫∫
U(ω) cos2ϕ dλ dϕ.

(3.27)

where RE is the mean radius of the Earth, ρ is the mean density of sea water, Ω is the mean ro-

tational speed of the Earth, λ and ϕ are longitude and latitude, U(ω) and V (ω) are (barotropic)

volume transport in λ and ϕ direction, respectively (cf. Equation 3.24). The first rows in Equa-

tions (3.25)–(3.27) denote the mass term, the second rows describe the motion term. ζ(ω) is

the harmonically varying ocean height. All harmonic constituents—ζ(ω), U(ω), and V (ω)—are

complex amplitudes of the form

ζ̂= Ae−iϕ (3.28)

where A is the amplitude and ϕ is the phase lag, allowing for straightforward numerical integra-

tion.

The numerical integration over global grids is done applying the Simpson cubature (Engeln-

Müllges et al., 2011) for all subsequent calculations.

The polar motion and LOD variations excited by OTAM can be calculated using a proper linear

combination of ∆I and h. This transfer needs to take into account various geophysical effects

and—for polar motion—the resonance frequencies of the free modes of the Earth, namely CW and

FCN (Chao & Ray, 1997). The FCN frequency is given by ωFCN = −1.0023203 cpsd (Mathews

et al., 1991, as cited in Gross, 1993). The CW frequency is ωCW = 2π(1 + i/(2Q))/T where

T = 434.45 sidereal days is the observed Chandler period and Q = 170 is the quality factor due

to energy dissipation (Wilson & Vicente, 1980, as cited in Gross, 1993).
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Gross (1993) summarizes the transfer function for polar motion as follows

p(ω) =
�

2.554 · 10−4 Ω

ωFCN −ω
+ 2.686 · 10−3 Ω

ωCW −ω
�
Ω∆I(ω)

AΩτ

+
�

6.170 · 10−4 Ω

ωFCN −ω
+ 1.124

Ω

ωCW −ω
�

h(ω)
AΩ

(3.29)

where τ = Ω2R5
E/(3GA), RE is the mean radius of the Earth, G is the universal gravitational

constant, ωFCN and ωCW are the frequencies of FCN and CW, respectively, and A is the least

principal moment of inertia.

When OTAM values are derived for the mass and motion terms, they need to be converted to

prograde and retrograde components, because of the CIP frequency conventions (cf. Section 2.1

and Figure 2.1) prior to calculating ERP corrections using Equations (3.29) and (3.33).

If cosine- and sine-amplitudes (in-phase and quadrature components, see Equation 4.14) for

OTAM are used instead of amplitudes and phases, the prograde and retrograde components can

be calculated as well. The cosine- and sine-amplitudes are commonly used when tidal terms are

fitted to time series, since they give linear equations in a least-squares adjustment. The conversion

from cosine- and sine-amplitudes, pxc and pxs for the case of x-pole, to pro- and retrograde

components is given as

Ap = −
1
2
(pxc + p ys)

Bp = +
1
2
(pxs − p yc)

Ar = −
1
2
(pxc − p ys)

Br = −
1
2
(pxs + p yc) .

(3.30)

After considering the CIP frequency convention, Ap, Bp, Ar , and Br are converted to polar motion

variations using Equation (3.29). Pro- and retrograde amplitudes A and phases ϕ are derived

analogously to classical harmonic motions,

Ap,r =
Ç

A2
p,r + B2

p,r

ϕp,r = arctan

�
Bp,r

Ap,r

�
.

(3.31)

Final polar motion corrections are usually given as amplitudes and phases of x- and y-
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3.7 Ocean tidal effects on Earth rotation

components. Cosine and sine-amplitudes are derived using

pxc = −Ap − Ar

pxs = +Bp − Br

p yc = +Bp + Br

p ys = +Ap − Ar .

(3.32)

The LOD transfer function reads

∆LOD(t) =
LOD0

CmΩ
(h3(t) + 0.756 Ω ∆I33(t)) (3.33)

where LOD0 = 86400 s is the nominal length of day and Cm is the greatest principal moment

of inertia of the crust and mantle of the Earth (cf. Equation 2.11; Gross, 1993). Because of the

∆LOD to UT1 correlation (Equation 2.5), the resultant UT1 variation is given by

∆UT1c =
∆LODs

ω · LOD0

∆UT1s = −
∆LODc

ω · LOD0

(3.34)

where subscripts c and s denote cosine- and sine-amplitudes, respectively, and ω is the tidal

frequency.
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Chapter 4

Estimation of oceanic currents from

measured elevations

When using the angular momentum approach (see Section 3.7), tidal corrections for ERP,

namely polar motion and ∆LOD, require knowledge of (1) changes of the inertia tensor (mass

term of OTAM) and (2) changes in relative angular momentum (motion term of OTAM). If ap-

plied to ocean tides, the former is given by the tidal elevation field, the latter by tide-induced

oceanic currents. The tidal heights can be derived from satellite altimetry (see Section 3.1), the

derivation of global tidal currents requires a modeling approach due to lack of widely distributed

and accurate in situ measurements. In principle, there are two ways of deriving tidal currents us-

ing measurements of the ocean surface: the gradient approach and full hydrodynamic modeling.

Both are briefly described below. In addition, there has been published an intermediate technique

which is used in the present work and described in the following sections.

A commonly used strategy to determine oceanic currents is to use depth-averaged momentum

equations which relate the flow to the elevation gradient (Cartwright et al., 1992). However, Ray

(2001) states three main shortcomings of this procedure. (1) The estimated flow is very sensitive

to elevation errors due to the gradient formulation; (2) mass conservation might not be satisfied;

and (3) there are singularities at “critical” latitudes where inertial currents exist without elevation

gradient (Cartwright et al., 1992; Ray, 2001).

The “full” modeling approach, on the other hand, determines the flow based on hydrodynamic

equations including observation constraints. Observations are “assimilated” into the model while

it is forward integrated in time, and their errors are accounted for through covariance informa-

tion. There are several approaches of assimilation schemes which have been reviewed by Eg-

bert & Bennett (1996). Two of the ocean tide models described in Section 3.6, namely FES2012

and HAMTIDE11a, fall in the category of hydrodynamic assimilation models.

This work uses an intermediate method, suggested by Ray (2001). A similar technique has

been published by Zahel (1991, 1995). The former uses (known) tidal heights as input and keeps

them fixed throughout the estimation process. The three problems of the Cartwright et al. (1992)

procedure are dealt with by applying a continuity equation ensuring mass conservation. Due to
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4.1 Dynamic equations

the continuity constraint the usually locally solved equations turn into a global inversion, which,

however, can be solved much faster than full data assimilation (Ray, 2001). This method of

deriving horizontal tidal velocities is used in the present work and, thus, is described in more

detail in the following section.

4.1 Dynamic equations

The barotropic equations of horizontal motion are depth-averaged, linearized and simplified

Navier-Stokes equations for a shallow and incompressible fluid on a rotating and spherical Earth.

They are given by (Ray, 2001)

ut − f k × u +
F
ρD
= −g∇(ζ− ζE − ζSAL) (4.1)

ζt = −∇(Du) (4.2)

where subscripts denote partial derivatives, e.g., ut =
∂ u
∂ t , u = (u, v)where u and v are horizontal

velocity components in eastward and northward direction, respectively. The second term in Equa-

tion (4.1) is a Coriolis term with f = 2Ω sinϕ being the Coriolis parameter and k being a unit

vector in local vertical direction. The Earth rotation vector in the local coordinate system (east,

north, up) is Ω(uvz) = (0,Ω cosϕ,Ω sinϕ). The Coriolis term, fCor = 2Ω(uvz) × u, equals f k × u if

the z coordinate of u and fCor is set to zero. The mean density of sea water is ρ = 1027 kg/m3

(Kämpf, 2010, p. 107). ∇ is the Nabla operator and denotes horizontal partial derivatives. The

stress term F could represent different physical mechanisms, such as bottom friction or turbulent

eddy viscosity (Mirabito et al., 2011; Ray, 2001). ζ denotes the (measured) tidal heights of the

ocean surface which have to be corrected for the equilibrium tide ζE and the self-attraction and

loading tide ζSAL, both of which constitute forcing terms for the tidal flow. D is the undisturbed

water depth. Equation (4.2) is the continuity equation for proper mass conservation.

Bottom friction removes energy from the flow and, thus, opposes the motion of water particles

(Pugh & Woodworth, 2014). A physically reasonable dissipation term due to bottom friction is

typically quadratic in velocity, F = cD|v |v, where v is the total velocity vector and the parameter

cD is typically 0.003 (Egbert & Erofeeva, 2002). However, the inversion strategy adopted in the

following requires a linear parameterization. Egbert et al. (1994) use a linear drag coefficient κ

so that the frictional drag terms become

Fλ = κρu

Fϕ = κρv
(4.3)

where κ is in the range between 0 and 0.1 ms−1 (Ray, 2001).

The tidal constituents in Equations (4.5)–(4.7)—ζ, ζE , ζSAL, u, and v—are expressed in the
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4. Estimation of oceanic currents from measured elevations

form

ζ= ζ̂eiωt , (4.4)

where hat ( ˆ ) variables are complex amplitudes as defined in Equation (3.28) and ω is the

angular frequency of the particular partial tide. Then, Equations (4.1) and (4.2) can be rewritten

as (Logutov & Lermusiaux, 2008; Ray, 2001)

iωÛ − f V̂ +
κÛ
D
= − gD

RE cosϕ
∂

∂ λ
(ζ̂− ζ̂E − ζ̂SAL) (4.5)

iωV̂ + f Û +
κV̂
D
= − gD

RE

∂

∂ ϕ
(ζ̂− ζ̂E − ζ̂SAL) (4.6)

1
RE cosϕ

�
∂ Û
∂ λ
+
∂ (V̂ cosϕ)
∂ ϕ

�
= −iωζ̂. (4.7)

The spherical coordinates are longitude λ and latitude ϕ, f = 2Ω sinϕ is the Coriolis parameter,

and RE is the radius of the Earth. Û and V̂ denote the unknown volume transport parameters (cf.

Equation 3.24).

4.1.1 Equilibrium tide

The astronomically forced equilibrium tide was introduced in Section 3.4. However, due to

the elastic response of the solid Earth and the altered gravitational potential, ζE needs to be

modified by a factor γ2 = 1+ k2 − h2 accounting also for the FCN (Wahr, 1981; Wahr & Sasao,

1981), so that (Hendershott, 1972; Pugh & Woodworth, 2014; Ray, 2001)

ζE = γ2
Vtid

g
. (4.8)

The degree-2 Love numbers k2 and h2 describe (1) the potential perturbation due to solid Earth

deformation; and (2) the deformation of the solid Earth due to tidal loading (Hendershott, 1972).

The presented algorithm uses astronomical amplitudes and Love number factors from Arbic et al.

(2004) which are listed in Table 4.1. The equilibrium tide of diurnal (index d) and semi-diurnal

(index s) tides can be computed using

ζE,d(ϕ,λ, t) = Aγ2 sin(2ϕ) cos(ωt +λ)

ζE,s(ϕ,λ, t) = Aγ2 cos2ϕ cos(ωt + 2λ).
(4.9)

Equilibrium amplitudes of partial tides not being mentioned in Table 4.1, e.g., 2N2 for EOT11a,

are calculated proportionally from the normalized tidal potential amplitudes (see Table 3.3). The
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4.1 Dynamic equations

Table 4.1: Astronomical amplitudes and Love num-
ber factors used for the calculation of the equilibrium
tide. Taken from Arbic et al. (2004).

Partial tide ω (10−4s−1) A (cm) 1+ k2 − h2

Q1 0.6495854 1.9273 0.695

O1 0.6759774 10.0661 0.695

P1 0.7252295 4.6848 0.706

K1 0.7292117 14.1565 0.736

N2 1.378797 4.6397 0.693

M2 1.405189 24.2334 0.693

S2 1.454441 11.2743 0.693

K2 1.458423 3.0684 0.693
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Figure 4.1: Equilibrium tides at t = 0 for partial tides K1 (left) and M2 (right) in centimeters.
Amplitudes and values for γ2, being a combination of Love numbers, are taken from Arbic et al.
(2004).

amplitudes A in Equation (4.9) can also be calculated from the HW95 tidal potential catalog using

A=





3
q

10
24 · S/g for diurnal tides

3
q

10
24 · C/g for semi-diurnal tides

(4.10)

where S and C are the sine- and cosine wave amplitudes in the HW95 catalog and g is the

gravitational acceleration. The equilibrium tides for a diurnal (K1) and a semi-diurnal tide (M2)

are shown in Figure 4.1. The latitude dependence and the longitude variation due to different

frequencies of diurnal and semi-diurnal tides can be clearly seen.

As all calculations are performed in frequency domain and the equilibrium tide is subtracted

from the measured tidal height (Equations 4.5 and 4.6), their phase reference needs to be in

accordance with those of the tidal heights. Therefore an initial phase lag is introduced with

respect to t = 0 according to the fundamental arguments from Simon et al. (1994), as cited in
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4. Estimation of oceanic currents from measured elevations

Hartmann & Wenzel (1995).

4.1.2 Loading and self-attraction

The loading and self-attraction denotes a feedback effect on tidal dynamics. Tidal heights

need to be corrected for elastic yielding of the solid Earth and for self-attraction. The solid Earth

deforms due to the change of the astronomical potential, which is accounted for by the equi-

librium tide. In addition the tidal elevation is affected by the depression of the ocean bottom

under the weight of the water column above. This rearrangement of the solid Earth changes the

gravitational field giving a second feedback effect to the system. The additional water masses, fur-

thermore, apply a gravitational self-attracting force on the nearby water particles (Müller & von

Storch, 2004; Stepanov & Hughes, 2004).

These effects, yielding of the solid Earth affecting tidal heights and additional attractions,

are corrected for by the self-attraction and loading (SAL) tide and have the same form as atmo-

spheric pressure forcing if a barotropic model is considered. It introduces a correction of about

10% of the tidal height in the gradient term (Accad & Pekeris, 1978). A rigorous computation

of the SAL tide requires either a convolution of the tidal height with a proper kernel (Green’s

function; Hendershott, 1972) or, equivalently, a spherical harmonic expansion using Love num-

bers (Stepanov & Hughes, 2004). Both of the rigorous calculation methods are computationally

expensive as, for example, the convolution requires a global integral over the whole ocean for

every grid point.

Accad & Pekeris (1978) use a simple proportionality factor to calculate the SAL tide ζSAL from

the tidal elevation ζ: ζSAL = βζ with β = 0.085. However, Ray (1998) showed that a global

value for the scalar approximation generates considerable errors, mostly in shallow water areas,

and should, thus, be replaced by an integral calculation. For few applications, the approximative

SAL tide might still be eligible. As Earth rotations variations are sensitive only to the integrated

oceanic currents, a simple form might, thus, be justified. The present study, however, computes

the SAL tide from the full computation using convolution with Green’s functions.

The calculation of ζSAL using convolution with a weighting function is given by (Ray, 1998)

ζSAL(ϕ,λ) = ρwR2
E

∫∫
ζ(ϕ′,λ′)G(ψ) cosϕ′ dϕ′ dλ′ (4.11)

where ρw is a mean value for the density of ocean water and G(ψ) are kernel functions depending

only on the angular distance ψ from the load. As (ρw · R2
E · ζ) gives units of kg, proper Kernel

functions G must relate a 1 kg mass at an angular separation ofψ to ζSAL. Green’s Kernel functions

can be calculated by (Farrell, 1973)

G(ψ) =
RE

ME

∞∑
n=0

(1+ k′n − h′n)Pn(cosψ) (4.12)
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Figure 4.2: Green’s function values for vertical displacement (geoid minus seafloor) due to a load,
distributed as cosine function, at distance ψ. The radius of the Earth RE = 6371 km. Modified
from Stepanov & Hughes (2004).

where ME = 5.9736 · 1024 kg is the mass of the Earth. The radius of the Earth RE = 6371 km.

The Love number k′n accounts for the additional gravitational effect due to the yielding of the

solid Earth, and h′n describes the Earth loading. When a proper combination of these load Love

numbers is used, G(ψ) relates the vertical uplift of the geoid relative to the ocean bottom to

a mass load at distance ψ. To cope with the singularity at the point itself, an extrapolation

to ψ = 0 and the mass distributed as a cosine function with radius 1 degree has been used

(Stepanov & Hughes, 2004). The Green’s function values as tabulated in the paper are shown

in Figure 4.2. All subsequent calculations of the SAL tide use those values for G(ψ). Figure 4.3

shows amplitudes and phases for two partial tides (K1 and M2) for tidal height variations from

the assimilation model HAMTIDE11a.

4.2 Algorithm and numerics

The linear system of Equations (4.5)–(4.7), supplemented by no-flow boundary conditions, is

of form Ax = b, where A is the design or coefficient matrix, x is the vector of unknown volume

transports and b is the right-hand side vector containing observed (tidal elevations), computed

(ζS) or known (ζE) quantities.

A staggered C-grid is used for the discretization on a global grid. Arakawa & Lamb (1977)

studied the space discretization error for geostrophic currents on different grid schemes. They

find best results for the staggered scheme C, subsequently called C-grid. The grid positions of

the variables—i.e., tidal heights ζ and eastward and northward velocity components u and v—

are shown in Figure 4.4. The spatial resolution of the global grid is 0.5◦ both for ζ and for the

unknown volume transports. The A matrix then has roughly 500 000 rows and 300 000 columns

(more equations than unknowns). The system is, thus, over-determined and can be solved in a

least-squares manner (Ray, 2001).
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Figure 4.3: Self-attraction and loading (SAL) tides for partial tides K1 (upper) and M2 (lower).
Amplitudes (left) are given in millimeters, phases (right) in degrees. Surface elevation data are
taken from the assimilation model HAMTIDE11a.
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Figure 4.4: Finite difference grid layout (C-grid, after Egbert & Erofeeva, 2002, Fig. 1).
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Figure 4.5: Pattern of non-zero elements in the A matrix when using a C-grid. This illustration
corresponds to a spatial resolution of 40◦.

No-flow boundaries set the flux in the direction (East-West or North-South) normal to the

land-ocean boundary (meridional or parallel) to zero. This constraint is applied to grid points at

closed boundaries, i.e., points where one of the two neighboring tidal height points is an ocean

point and the second is a land point. More precisely, the grid point Ui, j is a border point, and, thus,

gets a no-flow condition, if ζi−1, j or (exclusive or) ζi, j is an ocean point. Similarly, Vi, j gets a no-

flow constraint, if ζi, j−1 or (exclusive or) ζi, j is an ocean point. As will be shown in a later section,

relaxing the no-flow boundary condition by a factor of 0.1 slightly improves the estimated oceanic

currents. Each grid point in the open ocean generates four non-zero elements for the continuity

equation (4.7), and five elements for the momentum equations (4.5–4.6) as the Coriolis term is

averaged over the four surrounding C-grid elements. Thus, the system is sparse and has 2350578

non-zero elements for the case of a 0.5◦ resolution grid. This corresponds to a relative number

of 99.9987% zero elements. The sparsity pattern of the coefficient matrix is shown in Figure 4.5.

The first two inclined “lines” show the coefficients for the no-flow boundaries at coastal borders.

The third line corresponds to the continuity equation, the fourth and fifth line to the momentum

equations. The six dots at the lower left also arise from the momentum equations.

Due to the large number of equations and unknowns, an iterative algorithm is used for solving

the system in a least squares manner. The algorithm LSQR, described by Paige & Saunders (1982),

minimizes ‖Ax − b‖2 and is similar to the conjugate gradients method. It is also used by Ray

(2001) and Zahel (1995). An iterative method for solving least-squares problems might require a

preconditioner to achieve faster convergence. The system of equations including a preconditioner

reads

AM−1Mx = b (4.13)

with M being the preconditioning matrix. The iterative method then solves AM−1y = b and the
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4. Estimation of oceanic currents from measured elevations

unknowns can eventually be calculated using x = M−1y . Similar to Ray (2001), a preconditioner

for matrix A is used to set all columns to unit L2 norm. This makes M−1 a diagonal matrix. The

iterative solver converges approximately twice as fast when a preconditioner as described is used.

4.3 Inversion Results

The results in this chapter describe a “calibration” of the inversion algorithm using tidal

heights from HAMTIDE11a as input. The estimated volume transports can be consistently com-

pared to HAMTIDE11a volume transports. However, as will be shown in the following sections,

the inversion process depends on a variety of other input parameters and settings and, thus, re-

quires several adjusting steps. This chapter also quantifies different inputs and configurations

and gives an overview of expected accuracies. The “optimal” parameters found in this chapter

eventually serve as starting point for the final inversion using the empirical tidal heights from

EOT11a. Furthermore, the following Chapter 5 slightly refines the parameterization to achieve

the best results using empirical tidal heights. In addition, several other hydrodynamic solutions

are used for the comparison of volume transports in order to avoid a bias towards HAMTIDE11a.

An algorithm as described in Section 4.2 was implemented in Matlab. As a first validation

step, tidal heights from a hydrodynamic assimilation model (HAMTIDE11a) are used to derive

barotropic tidal currents. The estimated volume transports are then compared to the volume

transports from the assimilation model in order to assess their quality. Figures 4.6 and 4.7 show

these comparisons for the K1 and M2 tide, respectively. The general pattern of both the amplitudes

and the phases agree reasonably well for all tides, the diurnal tides however, slightly worse than

semi-diurnal tides. The phases show a better agreement for areas with high amplitudes. Also the

amplitudes are better represented when volume transports are higher. The different pattern for

diurnal and semi-diurnal tides—diurnal tides have their maxima at higher latitudes—is due to

the corresponding equilibrium tide: The largest (degree n= 2) diurnal (order m= 1) tides have

their potential maxima at ±45◦ latitude (cf. Equation 3.11). The M2 tide, on the other hand, has

its maximum of the tidal potential at the equator. This effect can also be seen in the tidal height

variation of K1 and M2 in Figure 3.4.

There are singularities at latitudes where the inertial frequency equals the tidal frequency

(Robertson, 2001). For diurnal tides this critical latitude ϕcrit = arcsin (ωtide/(2Ω)) ≈ ±30◦, and

for semi-diurnal tidesϕcrit ≈ ±75◦. For these latitudes the right hand side of the momentum equa-

tions (4.5–4.6) might not vanish and bridging over those areas is necessary (Kantha & Clayson,

2000; Ray et al., 1994). The bridging over critical latitudes is achieved by introducing the conti-

nuity equation and a proper weight on it in the inversion algorithm.

High frequency artifacts of HAMTIDE

Although the high weight on the continuity equation largely overcomes the singularities, vol-

ume transport bulges occur in open ocean, indicated by small closed contour lines. These arti-

47



4.3 Inversion Results

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 14 28 42 56 70 84 98

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 14 28 42 56 70 84 98

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 12 24 36 48 60 72 84

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 12 24 36 48 60 72 84

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 60 120 180 240 300 360

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 60 120 180 240 300 360

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 60 120 180 240 300 360

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 60 120 180 240 300 360

Figure 4.6: Algorithm validation for partial tide K1. Right column shows estimated volume
transports, left column shows volume transports from the hydrodynamic assimilation model
HAMTIDE11a. First and third row show eastward components (U); second and fourth row show
northward components (V). Units: m2/s (amplitudes), degree (phases).
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Figure 4.7: Algorithm validation for partial tide M2. Right column shows estimated volume
transports, left column shows volume transports from the hydrodynamic assimilation model
HAMTIDE11a. First and third row show eastward components (U); second and fourth row show
northward components (V). Units: m2/s (amplitudes), degree (phases).
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Figure 4.8: Tidal height amplitudes of partial tide K1 from the hydrodynamic assimilation model
HAMTIDE11a in the South Pacific (right). The jittering contour lines are particularly pronounced
in those areas. The left image shows an amplitude profile at latitude ϕ = −32◦ and its derivative
with respect to longitude λ.
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Figure 4.9: Tidal height amplitudes of partial tide M2 from the hydrodynamic assimilation model
HAMTIDE11a in the South Pacific (right). The left image shows an amplitude profile at latitude
ϕ = −32◦ and its derivative with respect to longitude λ.

facts are especially pronounced in the Pacific at higher latitudes for the case of K1 (cf. Figure 4.6).

Moreover, the larger volume transport areas show a noisy behavior, indicated by closed and jit-

tering contour lines. However, both features are apparent in the HAMTIDE volume transports as

well and even the tidal heights show an unexpected variation. Since the pattern is regular, the

problems might stem from the grid. Figure 4.8 shows amplitudes of the tidal height variation in

the south Pacific and a profile at latitude ϕ = −32◦. The amplitudes slightly decrease between

λ = −170◦ and approximately λ = −150◦ and increase again around λ = −140◦. The profile

in Figure 4.8 (left) seems to be smooth. The λ-derivative of the profile clearly shows the rapid

point alternation which can hardly be explained by physical processes. The latitude profile at

ϕ = −32◦ is close to the “critical” latitude of diurnal tides. Therefore, the same profile was ana-

lyzed for partial tide M2. It is shown in Figure 4.9. The alternating λ-derivative shows again the

non-smoothness of the tidal heights along the profile, the effect, however, seems to be smaller for
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Figure 4.10: RMS of estimated M2 volume transports (tidal heights for the inversion taken from
HAMTIDE11a) and the hydrodynamic HAMTIDE11a solution. Left: Eastward component U,
right: Northward component V. Units are m2/s.

M2 than for K1. That is, the singularity due to the “critical” latitude is not uniquely responsible

for the gridding issues.

In any case, these tidal height bulges seem to map into volume transports using the inver-

sion algorithm. However, as already mentioned, also the published version of the hydrodynamic

solution suffers from the apparent artifacts.

The Root mean square (RMS) of two harmonic functions with equal frequency, e.g., an esti-

mated sinusoid (superscript t) and a reference model sinusoid (superscript r) for a partial tide j,

can be calculated using

RMSr t
j =

√√√�
C r

j − C t
j

�2
+
�
Sr

j − S t
j

�2

2
, (4.14)

where S = Asinϕ and C = Acosϕ denote sine- and cosine-amplitudes, respectively. The RMS as

defined in Equation (4.14) is equal to the standard deviation of the difference of two harmonic

signals with equal frequency and equal to the classical RMS
q

n−1
∑

i x2
i if both harmonic signals

have the same (or zero) mean amplitude. Relative RMS values are obtained through division by

the total amplitude, i.e.,

Relative RMSr t
j =

RMSr t
jÈ�

C r
j

�2
+
�
Sr

j

�2
. (4.15)

Global maps of relative RMS values may be used to asses the quality of the linearized solution

when estimated volume transports are compared to hydrodynamic solutions. Figure 4.10 shows

RMS values on a global grid of estimated volume transports and the solution from HAMTIDE11a.

Larger RMS values are found in few areas, mostly close to the coast. A pronounced discrepancy

can be seen close to the Antarctic at around λ = −45◦ for both U and V component. There
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Figure 4.11: Ocean depth in meters from General Bathymetric Chart of the Oceans (GEBCO) data
at resolution 0.125◦.

is a strong bathymetry gradient and the resampling of the HAMTIDE11a from 0.125◦ to 0.5◦

bathymetry might influence estimated currents there as well. Other regions of larger differences

can be located within a few grid points off the coast, probably due to the no-flow condition at

closed boundaries. The open ocean areas show small RMS values, typically less than 3 m2/s.

There, the continuity equation “smooths” the volume transports reasonably well to show a good

agreement between estimated volume transports and HAMTIDE11a.

Influence of bathymetry

Figure 4.11 shows the General Bathymetric Chart of the Oceans (GEBCO, Gebco gridded

global bathymetry data. British Oceanographic Data Centre, Liverpool, United Kingdom, 2009)

with a resolution of 0.125◦. The original one arc-minute grid was resampled using Gaussian

weighting (σ = 0.5) over a 5× 5 arc-minutes area. HAMTIDE11a uses the same bathymetry, al-

though there are significant differences to original GEBCO data, especially around small islands.

Figure 4.12 shows differences of three bathymetry datasets, namely HAMTIDE11a (Taguchi,

2014, personal communication), GEBCO, and SRTM (USGS, 2004) data. The latter contains

bathymetry data from Smith & Sandwell (1997) between ±81◦, complemented by three higher

resolution grids. Higher latitudes data from the International Bathymetric Chart of the Oceans

(IBCAO; Jakobsson et al., 2012) were added to get global coverage (Becker et al., 2009).

Bathymetry differences of several hundred meters between GEBCO and SRTM (Figure 4.12,

right), even in the open ocean, are apparent. The deviations between the HAMTIDE11a and the

GEBCO bathymetries are much smaller in the open ocean, big discrepancies are seen at neigh-

boring grid points of small islands where differences can reach 1000 meters or more. To test the

influence of different bathymetries on estimated ocean currents, HAMTIDE11a tidal heights were
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Figure 4.12: Bathymetry differences in meters. Left: HAMTIDE11a−GEBCO, right:
GEBCO−SRTM.

inverted to volume transports using (1) HAMTIDE11a bathymetry; (2) GEBCO bathymetry; and

(3) SRTM bathymetry. All bathymetries were resampled to 0.5◦ resolution using Gaussian weight-

ing (σ = 0.5) over 5×5 nearest points. Figure 4.13 shows RMS values (absolute and relative) of

estimated M2 east volume transports (U) between solutions with use of different bathymetries.

North volume transports (V) show similar results with slightly better agreement.

As expected, the GEBCO solution shows a better agreement with HAMTIDE11a as the bathymetry

of HAMTIDE11a is based on GEBCO. Still, differences occur mainly at coastal regions or close to

small islands. The differences in open ocean are small, probably partly due to the large weight on

the continuity equation there. The median RMS for the comparison of HAMTIDE11a and GEBCO

is 0.2 m2/s, the median relative RMS is 0.7%.

The comparison with SRTM shows larger differences in volume transports, though in similar

areas as the GEBCO comparison. However, the differences do extend to the open ocean where

relative differences can reach 10% over a wide area, e.g., south of Australia (see Figure 4.13,

lower right). This can probably be explained by the non-systematic differences in bathymetry

between HAMTIDE11a and SRTM (cf. Figure 4.12). The median RMS when comparing SRTM

and HAMTIDE11a is 1.4 m2/s, the median relative RMS is 5.0%. An overview of RMS values for

all eight tidal constituents is given in Table 4.2. The median RMS values are of similar magnitudes

within one species, i.e., diurnal or semi-diurnal. For the comparison of HAMTIDE11a and GEBCO,

relative RMS values for diurnals are about two to three times larger than for semi-diurnals. This

effect is smaller for the comparison between HAMTIDE11a and SRTM where diurnal tides have

around 25% larger values in terms of median relative RMS.

As this study tries to improve tidal ERP predictions, and OTAM is the actual quantity they

are derived from, a comparison on the OTAM level is shown in Table 4.3. The components in x ,

y , and z direction are denoted by h1, h2, and h3. The figures show again clearly the influence

of bathymetry on relative momentum variations. The difference in OTAM values reaches up to

20% when SRTM bathymetry is used instead of the HAMTIDE11a bathymetry (which is based
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Figure 4.13: RMS values of the comparison of M2 estimated volume transports using different
bathymetry datasets. Upper row: RMS values for eastward volume transport in m2/s, lower
row: relative RMS values for the same component. The reference solution uses the HAMTIDE11a
bathymetry, the left column shows the comparison with GEBCO, and the right column shows the
comparison with SRTM.

Table 4.2: Median RMS values for the comparison of volume
transports using different bathymetry datasets. Absolute values
are given in m2/s, median relative RMS values are given in brack-
ets.

HAMTIDE11a/GEBCO HAMTIDE11a/SRTM

RMS U RMS V RMS U RMS V

Q1 0.03 (1.8%) 0.03 (2.3%) 0.08 (6.2%) 0.12 (7.4%)

O1 0.11 (1.6%) 0.14 (2.1%) 0.39 (5.7%) 0.55 (7.1%)

P1 0.04 (1.2%) 0.05 (2.0%) 0.17 (5.5%) 0.22 (7.2%)

K1 0.13 (1.2%) 0.17 (1.9%) 0.55 (5.7%) 0.66 (7.3%)

N2 0.03 (0.7%) 0.04 (0.7%) 0.29 (5.0%) 0.30 (5.0%)

M2 0.15 (0.7%) 0.17 (0.7%) 1.36 (5.0%) 1.47 (5.4%)

S2 0.06 (0.6%) 0.07 (0.8%) 0.57 (4.7%) 0.63 (6.0%)

K2 0.02 (0.6%) 0.02 (0.8%) 0.16 (4.9%) 0.17 (5.9%)
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Table 4.3: Relative RMS values of the OTAM comparison between inversion
solutions using different bathymetries. Reference is the inversion using the
original HAMTIDE11a bathymetry. Values are given in percent.

O1 K1 M2 S2

Bathymetry h1 h2 h3 h1 h2 h3 h1 h2 h3 h1 h2 h3

GEBCO 1.9 1.4 0.6 0.9 0.9 0.6 0.3 0.1 0.5 0.1 0.3 0.5

SRTM 20.4 8.3 1.7 10.9 3.4 1.7 11.1 12.8 5.5 9.9 8.7 1.6

on GEBCO). Even though more than half of the numbers give values well below 10%, the effect

of ocean bottom topography is a crucial factor for deriving accurate oceanic currents for the

determination of relative angular momentum. As one cannot easily judge one bathymetry as the

best (cf. Marks & Smith, 2006), and this study strives for consistency, we use (if available) the

same dataset as was used for the input data, i.e. tidal heights.

Influence of tolerance parameter

As the chosen algorithm solves the least-squares system iteratively, a stop criterion is required.

For LSQR, a tolerance parameter t is specified comparing the relative residual norm ‖b−Ax‖/‖b‖
of the current solution with the previous iteration. If it is smaller or equal the tolerance parameter

the iterative solver stops. This means that if t is chosen too small, the solution might be improved

in further iterations. If t is too large, iterations are carried out without improving the estimated

parameters, thereby taking a lot of time or even failing to converge. Ray (2001) uses a tolerance

parameter t = 10−5. To find a reasonable value for this parameter, several test inversions with

t = [10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 10−10] are carried out. The resultant oceanic currents

are converted to relative OTAM values and compared to OTAM from the hydrodynamic currents

from HAMTIDE11a. The RMS values are shown in Table 4.4 for the major semi-diurnal and di-

urnal solar and lunar tides. HAMTIDE11a tidal heights as well as the HAMTIDE11a bathymetry

are used for the inversion. The continuity equation is weighted by a factor c = 1000, the spa-

tial resolution is 0.5◦. The values for 10−10 show equal numbers as the solution using 10−9 as

tolerance and are therefore omitted in Table 4.4. Using a tolerance t < 10−9 has, thus, hardly

any effect on OTAM values. A reasonable accuracy requires around 10−7 as all components show

an improvement compared to 10−6. Only eight of twelve components improve using a tolerance

parameter t = 10−8 compared to 10−7. However, for some components of diurnal tides the solu-

tion seems to deteriorate the OTAM results when going from t = 10−5 to t = 10−6. For instance,

the h2 component of O1 as well as the h1 and h2 component of K1 give smallest RMS values for

t = 10−5 compared to all other tolerance parameters. On the other hand, the h3 component

clearly improves when t is decreased from 10−5 to 10−6. It seems that the improvement in the

axial component is at the expense of a deterioration in the equatorial components. For the semi-

diurnal constituents, smaller tolerance parameters produce more accurate results (until solutions
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4.3 Inversion Results

Table 4.4: RMS values of OTAM differences derived from the inversion algorithm and
HAMTIDE11a. Several tolerance parameters t were used to study the convergence of the al-
gorithm. A weighting factor of c = 1000 was used for this comparison. Unit: 1024 kg m2/s
(please note that this unit is one order of magnitude smaller than for typically published values,
it has been chosen for better readability).

O1 K1 M2 S2

t h1 h2 h3 h1 h2 h3 h1 h2 h3 h1 h2 h3

10−4 1.32 1.91 3.11 3.70 4.90 4.78 7.63 7.60 10.1 4.11 4.56 4.18

10−5 0.66 0.88 0.30 1.46 1.69 1.00 6.29 4.79 4.13 3.64 2.57 2.50

10−6 0.93 1.45 0.07 2.22 2.22 0.14 1.59 3.33 0.88 1.11 1.51 0.24

10−7 0.78 1.33 0.03 2.11 2.01 0.09 1.46 2.66 0.71 0.97 1.11 0.23

10−8 0.62 1.28 0.04 1.93 1.96 0.12 1.49 2.65 0.67 0.95 1.05 0.23

10−9 0.59 1.26 0.05 1.89 1.94 0.13 1.50 2.64 0.67 0.95 1.05 0.23

converge) throughout all components. For most-accurate inversions, a tolerance parameter of

10−9 is required and, thus, used in subsequent calculations.

Relaxing the boundary condition

The largest residuals of estimated volume transports with respect to the hydrodynamic so-

lution (see Figure 4.10) occur, except for the area close to Antarctica, at coastal regions where

no-flow boundary conditions are applied. Due to bathymetry inaccuracies (also, a high-resolution

bathymetry more accurately describes the true ocean topography) and other modeling errors, the

large weight on the continuity equation might lead to unrealistically large volume transports at

the coast. McIntosh & Bennett (1984) found that relaxing the rigid boundary condition signif-

icantly affects their solution. Hence, for test calculations the continuity equation is experimen-

tally down-weighted at boundary grid points by a factor of 0.1 and 0.01, respectively. The volume

transports show hardly any change in open ocean due to relaxed boundary conditions. Significant

relative RMS changes above a few percent are mostly within the first two grid points from the

coast where the no-flow condition is applied. The resultant effect on OTAM is shown in Table 4.5,

which gives relative RMS values compared to the hydrodynamic solution of HAMTIDE11a. When

a relax factor of 0.1 is applied on the continuity equation at the coast, the OTAM values are up

to 1% closer to the reference (HAMTIDE11a). This improvement is found to be true for basically

all tides and components. Decreasing the relax factor further to 0.01 results in an increase in

RMS values and, thus, does not lead to more accurate estimates. Differences in components (h1,

h2, h3) and in species (diurnal, semi-diurnal) are obvious in Table 4.5. The axial component of

angular momentum is far more accurately determined: Six of eight tides agree within 5%, only

the smaller constituents N2 (maximum 11.9%) and K2 (maximum 6.2%) have larger differences.

Diurnal tides in the equatorial components show OTAM values which are 10 to 20 percentage
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4. Estimation of oceanic currents from measured elevations

Table 4.5: Comparison of relaxing factors for the no-flow condition at closed boundaries. Shown
are relative RMS values of OTAM as computed from different inversion solutions. Reference
OTAM is HAMTIDE11a. Values are given in percent.

O1 K1 M2 S2

Relax factor h1 h2 h3 h1 h2 h3 h1 h2 h3 h1 h2 h3

No relax 21.7 29.8 0.9 33.5 24.9 1.8 14.0 15.3 4.5 17.7 11.2 3.1

0.1 20.6 29.2 0.9 32.9 24.8 1.8 13.0 14.3 4.0 16.7 10.6 2.9

0.01 21.7 29.8 0.9 33.5 24.9 1.8 13.9 15.2 4.5 17.5 11.2 3.1

points worse compared to semi-diurnals.

Weighting

As the unknown parameters in Equations (4.5)–(4.7) are volume transports instead of cur-

rents, the only dynamical errors in the continuity equation (4.7) stem from neglecting non-linear

terms and from the measurement errors of the tidal heights ζ. Elevation errors in recent ocean

tide models are well below the centimeter level in the open ocean (Stammer et al., 2014) and the

residuals should be of the same magnitude. The momentum equations (4.5–4.6), on the other

hand, contain most of the errors of the dynamic system. Those errors stem from the mismodeling

of dissipative terms (Equation 4.3) and errors in the bathymetry (Ray, 2001).

Therefore, the continuity equation must be weighted far more heavily than the momentum

equations. Ray (2001) finds a proper scaling factor c = 1000 m/s. Several weighting factors

are tested and the effect on relative OTAM for several ocean current solutions is calculated. The

reference is again OTAM from the hydrodynamic solution HAMTIDE11a. The RMS values of the

respective solution and the reference solution is shown in Table 4.6. The weights showing the

smallest RMS values depend both on the harmonic constituent and on the OTAM component.

The differences in weights giving the best agreement are large, as will be shown in the following.

It, thus, stands to reason to adapt the weight per constituent and component to derive accurate

oceanic currents for the motion term contributions to ERP variations.

For the case of purely lunar semi-diurnal tides (N2 and M2) a weight of around 600 gives

reasonably small RMS values for all components (h1, h2, and h3). The h2 component for M2

shows a better agreement with the hydrodynamic solution HAMTIDE11a using a weight of 200.

However, the resultant RMS differs only by a few percent when changing weights from 600 to

200. Figures are different for the purely solar semi-diurnal tide S2. The equatorial components

h1 and h2 show the best agreement with HAMTIDE11a for weight 200. The h3 component can be

significantly improved when weights are larger: we find the smallest RMS of 0.05·1024 kg m2/s for

weight 1500. The corresponding OTAM value differs from the HAMTIDE11a OTAM value by 0.6%

(relative RMS). A similar behavior is found for the semi-diurnal luni-solar tide K2 (not shown),

however with larger weights in both the equatorial (400) and the axial (2000) components.
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4.3 Inversion Results

Table 4.6: Influence of weighting of the continuity equation on inverted barotropic currents.
Values denote RMS of relative OTAM with respect to the hydrodynamic solution of HAMTIDE11a.
The smallest RMS value for each component is highlighted.

O1 K1 M2 S2

Weight h1 h2 h3 h1 h2 h3 h1 h2 h3 h1 h2 h3

1 8.39 5.13 0.69 19.0 20.3 2.62 3.47 4.93 5.36 0.72 1.09 1.17

100 3.45 3.69 0.41 9.84 12.52 0.64 2.06 2.19 3.30 0.34 0.64 0.89

200 2.01 2.65 0.20 6.43 8.26 0.57 1.79 1.73 2.38 0.34 0.61 0.78

400 1.10 1.86 0.09 3.80 4.66 0.26 1.53 2.01 1.11 0.46 0.68 0.64

600 0.81 1.56 0.07 2.77 3.19 0.08 1.39 2.24 0.33 0.63 0.81 0.50

800 0.67 1.38 0.05 2.22 2.42 0.06 1.39 2.44 0.26 0.81 0.93 0.36

1000 0.62 1.28 0.04 1.93 1.96 0.12 1.49 2.65 0.67 0.95 1.05 0.23

1200 0.53 1.15 0.08 1.66 1.61 0.19 1.66 2.85 1.01 1.08 1.15 0.12

1500 0.48 1.04 0.14 1.45 1.27 0.28 1.88 3.14 1.40 1.22 1.29 0.05

2000 0.42 0.92 0.22 1.23 0.95 0.39 2.18 3.56 1.87 1.39 1.47 0.21

2500 0.38 0.84 0.28 1.12 0.77 0.48 2.36 3.88 2.19 1.49 1.60 0.33

3000 0.36 0.79 0.31 1.05 0.67 0.53 2.46 4.12 2.41 1.55 1.70 0.42

4000 0.34 0.74 0.35 0.97 0.58 0.60 2.60 4.43 2.68 1.62 1.83 0.54

5000 0.33 0.71 0.38 0.94 0.54 0.63 2.66 4.61 2.83 1.65 1.91 0.59

6000 0.33 0.70 0.39 0.92 0.51 0.65 2.69 4.72 2.92 1.67 1.96 0.64

7000 0.31 0.68 0.39 0.90 0.50 0.67 2.72 4.79 2.98 1.69 1.98 0.66

8000 0.32 0.68 0.40 0.89 0.49 0.67 2.73 4.83 3.01 1.69 2.01 0.68

9000 0.31 0.67 0.40 0.89 0.48 0.68 2.75 4.87 3.04 1.70 2.02 0.68

10000 0.31 0.67 0.41 0.87 0.48 0.68 2.75 4.89 3.06 1.70 2.03 0.70
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4. Estimation of oceanic currents from measured elevations

Table 4.7: Proper weights for the continuity equation in the least-squares
adjustment from the “calibration” experiments when deriving oceanic
currents from HAMTIDE11a tidal elevations using shallow water equa-
tions.

Type Example Weight for h1, h2 Weight for h3

Diurnal lunar O1, Q1 10000 1000

Diurnal solar P1 10000 600

Diurnal luni-solar K1 10000 800

Semi-diurnal lunar M2, N2 600 600

Semi-diurnal solar S2 200 1500

Semi-diurnal luni-solar K2 400 2000

The values for the diurnal tides show a clearly different behavior. In particular for equatorial

components, the continuity equation requires a much larger weight to obtain the best agree-

ment with the hydrodynamic solution of HAMTIDE11a. For all diurnal constituents available in

HAMTIDE11a (O1, Q1, P1, and K1) weights above 7000 yield similar results for the equatorial

components h1 and h2. The values show hardly any change when increasing the weight from

9000 to 10000. However, the apparently optimal weight is 10000 for the equatorial components

of diurnal tides. For the axial OTAM, similar weights are found as for semi-diurnal tides: Diurnal

lunar tides (O1 and Q1) show smallest RMS values for a weight of 1000, the diurnal solar tide

P1 requires a smaller weight of 600 to yield the best agreement to OTAM from HAMTIDE11a.

The luni-solar tide K1 lies in between with a recommended weight of 800. The recommended

weights for the tidal constituents per component are summarized in Table 4.7. There should be

noted, however, that the use of different weights per tide and component introduces an incon-

sistency. The relative OTAM values are derived from different volume transport solutions and

combined “arbitrarily”. That means that two solutions of oceanic flows are used to derive the

OTAM components of one tide.
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Chapter 5

New Earth rotation corrections based

on empirical ocean tide models

In this chapter we apply the findings from the previous section in order to estimate new Earth

rotation corrections. As this work seeks to use empirical ocean tide models for ERP corrections,

oceanic currents from the tidal model EOT11a (Savcenko & Bosch, 2012) are derived using the

algorithm described in Chapter 4. This empirical ocean tide model is developed at DGFI in Munich

and used for reprocessing gravity data from the satellite mission GRACE (Bosch et al., 2009). To

estimate ocean currents from EOT11a, the first algorithm parameters are taken according to the

findings in Section 4.3. Solutions with weights mentioned in Table 4.7 are calculated to examine if

the weights have a similar impact when using EOT11a instead of HAMTIDE11a. Figure 5.1 shows

a comparison of OTAM differences. Data points show relative RMS values of OTAM (motion term)

with respect to the reference model TPXO7.2, another recent assimilation model mentioned in

Stammer et al. (2014). Some solutions are omitted for better readability. In this validation section

additional hydrodynamic models are employed for comparing estimated volume transports. This

allows a more generalized view on the results and avoids a bias towards HAMTIDE11a.

As expected, the weights have a similar effect on the solution as for the ocean tide model

HAMTIDE11a (see Section 4.3). For example, the algorithm requires a large weight for the equa-

torial components (h1 and h2) of diurnal tides. However, this constraint seems to be too tight

for semi-diurnal tides and for the polar component in both tidal frequency bands. The diurnal

h3 component shows smallest RMS values for weights between 400 and 1000 in the comparison

with hydrodynamic assimilation tidal models. Also the semi-diurnal tides show similar charac-

teristics as in the HAMTIDE11a calibration, whose values are shown in Table 4.7. The equatorial

components require a weight of around 200 for all semi-diurnal tides, which is even smaller than

for the calibration. The polar component h3 again shows the best agreement to hydrodynamic

solutions with weights between 400 and 1500.

The assimilation solutions TPXO7.2, HAMTIDE11a, and FES2012 mutually agree in general

better than the inversion algorithm at a level of about < 10%. However, this was expected as

“full” modeling includes a more realistic hydrodynamic behavior of a flow. Nevertheless, the
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Figure 5.1: Relative RMS values of OTAM (motion term only, dimensionless) from oceanic cur-
rents. Reference model is TPXO7.2. The weights for the inversion of EOT11a tidal heights are
given in the legend. HAM11a is HAMTIDE11a. The three figures denote (clockwise) x-,y-, and
z-components.

intermediate approach used in this work gives reasonable results and the relative OTAM agrees

to at least one hydrodynamic solution within a few percentage points.

The best agreement for EOT11a with OTAM from hydrodynamic solutions are given at slightly

different weights than for the “calibration” results from Section 4.3. These recommended weights

are given in Table 5.1. The weights appear to be smaller and more homogeneous than those

from HAMTIDE11a. For example, three of the four major semi-diurnal tides show the smallest

OTAM RMS in the equatorial components for a weight of 200. The S2 equatorial component

shows slightly smaller RMS values using an even smaller weight of 100. The comparison for

HAMTIDE11a (see Table 4.7) showed the best agreement for weights between 200 and 600. The

smaller weight could be due to the apparent gridding feature, which was shown in Figure 4.8.

The gridpoints close to those features might require a larger weight on the continuity equation to

derive smoother volume transports.

Oceanic currents from the empirical ocean tide model EOT11a were calculated using the

algorithm described in Chapter 4 with the weights from Table 5.1. As the empirically derived

EOT11a does not use any bathymetry data, the GEBCO bathymetry (1-minute grid downsampled

using Gaussian weighting) was used in the inversion process. The tolerance parameter was set
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5. New Earth rotation corrections based on empirical ocean tide models

Table 5.1: Applied weights for the continuity equation in the least-squares
adjustment when deriving relative OTAM from oceanic currents from the
empirical ocean tide model EOT11a using shallow water equations.

Type Example Weight for h1, h2 Weight for h3

Diurnal lunar O1, Q1 10000 600

Diurnal solar P1 10000 400

Diurnal luni-solar K1 10000 800

Semi-diurnal lunar M2, N2 200 400

Semi-diurnal solar S2 100 2000

Semi-diurnal luni-solar K2 200 1000

to t = 10−9. The no-flow condition at closed boundaries was relaxed by a factor of 0.1. Global

maps showing estimated volume transports are shown in Figures 5.2 and 5.3. The former shows

partial tides O1 and K1, the latter shows tides M2 and S2.

The diurnal tides show very noisy volume transports in spite of the large weight on the con-

tinuity constraint of 10000. This is, again, likely due to the high-frequency oscillation pattern

of the tidal heights as mentioned before and shown in Figures 4.8 and 4.9 for HAMTIDE11a,

which occurs, however smaller, also in EOT11a. These artifacts might be one of the reasons why

diurnal tides require a much larger weight on the continuity equation to derive accurate volume

transports. However, a strong smoothing of tidal heights has not been applied because the mass

term of OTAM should be based as much as possible on the original empirical solution of EOT11a

and small scale noise in volume transports cancel due to integration when calculating angular

momentum. The global patterns can be well recognized in a comparison with the assimilation

model FES2012. The main differences occur in small areas of large velocity and topography gra-

dients, such as in the Weddell Sea south-east of Argentina or in the Arctic ocean north of Alaska.

The derived volume transports from EOT11a in these areas are smaller than volume transports

from FES2012, possibly due to the continuity constraint.

The volume transports of semi-diurnal tides show a very good agreement in comparison with

FES2012. Both amplitudes and phases have the same global pattern, the EOT11a solution is

(again) slightly noisier than the assimilation model. However, the noise level is clearly smaller

for semi-diurnal tides than for diurnal constituents.

The resultant OTAM for the four diurnal tides (Q1, O1, P1, and K1) and five semi-diurnal tides

(2N2, N2, M2, S2, and K2) from EOT11a are given in Table 5.2. For comparison on the OTAM

level, Tables 5.3 and 5.4 show angular momentum values derived from the assimilation models

HAMTIDE11a and FES2012. H1, H2, and H3 denote x , y , and z components of the mass term

of ocean tidal angular momentum, lowercase letters those of the motion term. In general, the

OTAM motion terms of the assimilation models mutually agree slightly better than with those

from EOT11a. However, even between the assimilation models, differences can be well above

63



0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 12 24 36 48 60 72 84

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 60 120 180 240 300 360

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 12 24 36 48 60 72 84

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 60 120 180 240 300 360

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 12 24 36 48 60 72 84

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 60 120 180 240 300 360

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 12 24 36 48 60 72 84

0˚ 60˚ 120˚ 180˚ −120˚ −60˚ 0˚

−90˚

−45˚

0˚

45˚

90˚

0 60 120 180 240 300 360

Figure 5.2: Volume transports of diurnal tides O1 (two upper rows; east/north direction) and K1
(two lower rows) from the inversion algorithm based on tidal heights from EOT11a. Left column:
Amplitudes in m2/s. Right: Phases in degrees. Weights for the continuity equation were applied
according to Table 5.1 (shown are the solutions using the “equatorial” weights).
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Figure 5.3: Volume transports of semi-diurnal tides M2 (two upper rows; east/north direction)
and S2 (two lower rows) from the inversion algorithm based on tidal heights from EOT11a. Left
column: Amplitudes in m2/s. Right: Phases in degrees. Weights for the continuity equation were
applied according to Table 5.1 (shown are the solutions using the “equatorial” weights).
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Table 5.2: OTAM derived from the empirical ocean tide model EOT11a. The
oceanic currents for the motion term were calculated using the algorithm
described in Chapter 4 with weights according to Table 5.1. The spatial res-
olution for the mass term is 0.125◦ and 0.5◦ for the motion term. Amplitudes
in 1025 kg m2/s, phases in degrees.

x y z

Tide Type Amp Pha Amp Pha Amp Pha

Mass term 0.115 338.7 0.259 215.5 0.066 137.5

Q1 Motion term 0.069 291.4 0.090 206.8 0.118 107.9

Total 0.170 321.3 0.348 213.3 0.178 118.4

Mass term 0.480 329.4 1.173 222.2 0.167 171.2

O1 Motion term 0.269 304.3 0.494 202.3 0.549 119.4

Total 0.733 320.4 1.646 216.3 0.665 130.8

Mass term 0.154 315.9 0.451 223.0 0.044 20.0

P1 Motion term 0.212 290.0 0.252 196.6 0.201 131.0

Total 0.357 300.9 0.686 213.6 0.190 118.5

Mass term 0.450 308.4 1.372 223.6 0.186 20.1

K1 Motion term 0.527 285.7 0.875 195.5 0.701 132.6

Total 0.958 296.1 2.183 212.7 0.653 117.3

Mass term 0.020 321.0 0.003 125.8 0.012 154.8

2N2 Motion term 0.011 233.2 0.029 174.2 0.054 321.9

Total 0.023 292.7 0.031 170.1 0.042 318.3

Mass term 0.125 347.1 0.034 237.9 0.042 65.4

N2 Motion term 0.156 240.4 0.229 162.4 0.288 315.1

Total 0.170 285.3 0.240 170.3 0.276 323.3

Mass term 0.506 9.4 0.351 305.7 0.602 84.7

M2 Motion term 0.901 260.4 1.573 166.7 1.567 319.2

Total 0.878 293.4 1.328 176.7 1.312 341.1

Mass term 0.115 41.9 0.284 9.9 0.214 131.7

S2 Motion term 0.541 293.8 0.933 198.8 0.832 341.0

Total 0.517 306.0 0.654 202.7 0.654 350.2

Mass term 0.033 49.5 0.084 12.1 0.080 102.2

K2 Motion term 0.145 295.4 0.267 196.7 0.212 335.7

Total 0.135 308.3 0.183 198.8 0.177 357.1
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5. New Earth rotation corrections based on empirical ocean tide models

Table 5.3: OTAM from the assimilation model HAMTIDE11a. Amplitudes in 1025 kg m2/s,
phases in degrees.

Mass terms (heights) Motion terms (currents)

H1 H2 H3 h1 h2 h3

Tide Amp Pha Amp Pha Amp Pha Amp Pha Amp Pha Amp Pha

Q1 0.104 336.9 0.246 213.9 0.064 109.1 0.055 292.3 0.066 204.3 0.122 110.5

O1 0.471 329.5 1.154 221.7 0.225 154.3 0.286 300.0 0.431 205.4 0.546 119.1

P1 0.185 320.7 0.456 225.9 0.035 35.0 0.185 294.1 0.263 196.2 0.244 128.4

K1 0.425 306.6 1.339 223.3 0.151 34.8 0.574 284.1 0.783 188.0 0.722 130.9

N2 0.126 350.3 0.034 232.1 0.047 79.7 0.178 245.6 0.274 156.6 0.331 325.3

M2 0.511 10.5 0.346 306.0 0.600 84.6 1.151 258.8 1.850 165.8 1.699 318.6

S2 0.120 39.6 0.289 9.3 0.252 125.1 0.569 295.7 0.988 201.2 0.778 340.7

K2 0.029 32.5 0.081 10.8 0.065 136.6 0.153 298.5 0.270 204.3 0.216 343.5

10%. The biggest difference is found for the x-component of partial tide N2, where the relative

RMS is 36.2% between FES2012 and HAMTIDE11a. Also the diurnal Q1 differs by 18.9%, 17.1%,

and 15.9% for x-, y-, and z-component, respectively. Still, the majority of components between

FES2012 and HAMTIDE11a agree within 10% relative RMS.

The comparison with OTAM from the empirical ocean tide model EOT11a shows slightly larger

deviations from the assimilation models compared to their mutual agreement. Again, the majority

of components agree better than 10% (relative RMS) with a maximum of 31.9% (x-component for

partial tide N2) with respect to FES2012. The mean relative RMS values over three components

x , y , and z are summarized in Table 5.5.

Figure 5.4 shows phasor diagrams of OTAM values from four ocean tide models. The mo-

tion terms for model EOT11a are derived from tidal currents from the inversion algorithm using

weights according to Table 5.1. Mass terms typically agree better than motion terms, likely due

to the variety of input data sets and estimation parameters in the hydrodynamic solution.

The OTAM values from EOT11a are converted to ERP variations using equations described

in Section 3.7. The correction values for polar motion and UT1−UTC are given in Tables 5.6

and 5.7, respectively. A graphical representation of ERP variations from several models is shown

in Figure 5.5. Prograde and retrograde polar motion coefficients as well as cosine- and sine-

amplitudes for ∆UT1 are plotted for eight major tides.

5.1 Minor tides and admittance

Several modern ocean tide models include more than only the eight major tides. For example,

the FES2012 (Carrère et al., 2012), a hydrodynamic assimilation model, includes 32 tidal con-

stituents, six of them being long-term tides. However, empirical solutions and other assimilation

models still consist basically of eight major tides. The two empirical models in a recent com-
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Table 5.4: OTAM from the assimilation model FES2012 (selected tidal constituents). Ampli-
tudes in 1025 kg m2/s, phases in degrees.

Mass terms (heights) Motion terms (currents)

H1 H2 H3 h1 h2 h3

Tide Amp Pha Amp Pha Amp Pha Amp Pha Amp Pha Amp Pha

Z0 0.011 0.006 0.510 0.002 0.001 0.006

Ssa 0.008 63.9 0.004 235.3 0.342 29.2 0.003 271.6 0.002 272.3 0.004 29.8

Q1 0.116 340.4 0.264 215.4 0.072 129.3 0.058 307.8 0.075 217.1 0.151 103.1

O1 0.476 330.1 1.178 221.9 0.180 171.1 0.291 299.7 0.442 206.1 0.651 115.1

P1 0.169 310.6 0.450 223.2 0.069 347.6 0.183 287.4 0.255 192.8 0.257 128.4

K1 0.462 308.3 1.377 224.2 0.187 1.9 0.557 288.8 0.774 192.1 0.804 128.3

J1 0.026 294.0 0.076 228.8 0.014 42.5 0.036 292.0 0.055 186.7 0.046 141.3

2N2 0.021 312.9 0.004 120.7 0.004 151.0 0.014 277.6 0.036 168.0 0.057 324.4

µ2 0.014 316.6 0.007 100.1 0.027 89.6 0.015 263.5 0.039 164.0 0.046 327.5

N2 0.122 346.9 0.031 229.8 0.049 68.4 0.126 260.2 0.245 160.7 0.276 328.2

ν2 0.020 347.6 0.007 254.0 0.017 46.7 0.029 250.1 0.051 156.4 0.048 322.5

M2 0.510 10.1 0.361 305.7 0.602 84.4 0.962 259.7 1.812 166.1 1.523 315.2

S2 0.106 39.1 0.278 8.5 0.249 129.1 0.560 299.5 0.969 198.2 0.798 347.3

K2 0.031 35.3 0.082 11.9 0.045 128.9 0.174 292.4 0.275 194.9 0.224 342.5

Table 5.5: Relative RMS values of OTAM motion terms. Values denote mean values
over x , y , and z) with respect to a reference model as given in the table. Model
EOT11a denotes motion term values as given in Table 5.2.

Q1 O1 P1 K1 N2 M2 S2 K2

w.r.t. FES2012

EOT11a 20.6% 9.8% 10.7% 8.6% 17.9% 6.4% 6.2% 8.1%

HAMTIDE11a 17.3% 5.2% 5.6% 6.4% 20.2% 8.3% 5.7% 8.5%

w.r.t. EOT11a

FES2012 19.7% 10.4% 11.6% 8.8% 15.7% 7.0% 6.2% 9.1%

HAMTIDE11a 12.5% 5.8% 9.6% 7.0% 15.1% 12.8% 4.7% 8.3%
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Figure 5.4: Phasor diagrams of OTAM from ocean tide models FES2012 (blue), HAMTIDE11a
(red), TPXO7.2 (green), and EOT11a (yellow, weights for the inversion according to Table 5.1).
Shown are values of partial tides K1 (first row), M2 (second row), and S2 (third row). Circles
denote x-components, squares y-components, and diamonds z-components of OTAM, respectively.
Amplitudes in 1024 kg m2/s, phases in degrees.
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5.1 Minor tides and admittance

Table 5.6: Polar motion variation coefficients for nine major tides based on EOT11a. Oceanic
currents for the calculation of relative OTAM are derived from EOT11a surface elevation data
using the inversion algorithm described in Chapter 4. The parametrization for the inversion
process is specified in Chapter 5.

Tide Delaunay arguments Doodson Period Xs X c Ys Yc

γ l l ′ F D Ω number (hours) (µas) (µas) (µas) (µas)

γ l l ′ F D Ω number (hours) (µas) (µas) (µas) (µas)

Q1 1 -1 0 -2 0 -2 135.655 26.8684 10.3 30.5 -30.5 10.3

O1 1 0 0 -2 0 -2 145.555 25.8193 65.1 146.1 -146.1 65.1

P1 1 0 0 -2 2 -2 163.555 24.0659 28.1 40.3 -40.3 28.1

K1 1 0 0 0 0 0 165.555 23.9345 -113.0 -158.0 158.0 -113.0

2N2 2 -2 0 -2 0 -2 235.755 12.9054 -6.6 -0.9 1.1 4.0

N2 2 -1 0 -2 0 -2 245.655 12.6583 -49.0 -8.7 3.9 33.2

M2 2 0 0 -2 0 -2 255.555 12.4206 -282.1 -24.6 51.1 167.8

S2 2 0 0 -2 2 -2 273.555 12.0000 -132.3 53.1 56.1 84.3

K2 2 0 0 0 0 0 275.555 11.9672 -38.0 12.7 15.5 21.4

Table 5.7: ∆UT1 and∆LOD variation coefficients for nine major tides based on EOT11a.
Oceanic currents for the calculation of relative OTAM are derived from EOT11a surface
elevation data using the inversion algorithm described in Chapter 4. The parametrization
for the inversion process is specified in Chapter 5.

Tide Delaunay arguments Doodson Period ∆UT1 ∆LOD

γ l l ′ F D Ω number (hours) sin cos sin cos

(µs) (µs) (µs) (µs)

Q1 1 -1 0 -2 0 -2 135.655 26.8684 3.8 -1.9 -10.8 -21.5

O1 1 0 0 -2 0 -2 145.555 25.8193 12.6 -10.0 -58.1 -73.4

P1 1 0 0 -2 2 -2 163.555 24.0659 3.8 -2.4 -14.8 -24.0

K1 1 0 0 0 0 0 165.555 23.9345 -13.2 8.0 50.5 83.2

2N2 2 -2 0 -2 0 -2 235.755 12.9054 -0.4 -0.4 -4.3 5.1

N2 2 -1 0 -2 0 -2 245.655 12.6583 -2.7 -2.2 -25.7 32.0

M2 2 0 0 -2 0 -2 255.555 12.4206 -14.9 -6.9 -84.1 181.1

S2 2 0 0 -2 2 -2 273.555 12.0000 -8.0 -1.8 -22.1 100.1

K2 2 0 0 0 0 0 275.555 11.9672 -2.1 -0.3 -4.1 26.6
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5. New Earth rotation corrections based on empirical ocean tide models

Table 5.8: Overview of different ERP models derived from the empirical ocean tide model
EOT11a. Type ’H’ stands for heights, ’C’ for currents.

Nr. Type Based on Tides Resolution Parameters

1 H EOT11a 9 major tides 0.125◦

C Inversion (based on

EOT11a elevations)

9 major tides 0.5◦ Tolerance t = 10−9,

relax factor fr = 0.1,

weights: Table 5.1

2 H EOT11a, admittance in-

terpolation of OTAM

9+19a 0.125◦ Minor tides: Quadratic

admittance interpola-

tion of OTAM values

C Inversion, admittance

interpolation of OTAM

9+19a 0.5◦ Minor tides: Quadratic

admittance interpola-

tion of OTAM values

using weights of tidal

current solution from

Table 5.13

FF5 H EOT11a, admittance in-

terpolation of OTAM

9+10b 0.125◦ Minor tides: Quadratic

admittance interpola-

tion of OTAM values

C Inversion, admittance

interpolation of OTAM

9+10b 0.5◦ Minor tides: Quadratic

admittance interpola-

tion of OTAM values

using weights of tidal

current solution from

Table 5.13
a 165.565, 145.545, 275.565, 255.545, 247.455, 175.455, 155.655, 237.555, 265.455, 272.556, 185.555,

137.455, 135.645, 127.555, 155.455, 165.545, 185.565, 162.556, 125.755; accounted for by admittance
interpolation of OTAM values of nine EOT11a tides.

b 165.565, 255.545, 237.555, 265.455, 185.555, 137.455, 135.645, 155.455, 165.545, 185.565; accounted for by
admittance interpolation of OTAM values of nine EOT11a tides.
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Figure 5.5: Phasor diagrams for ERP variations for eight major tidal constituents. Subscripts p
and r for polar motion denote prograde and retrograde components, respectively. Subscripts c
and s for ∆UT1 denote cosine- and sine-amplitudes, respectively.
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5. New Earth rotation corrections based on empirical ocean tide models

parison (Stammer et al., 2014) are OSU12 (Fok, 2012) and EOT11a (Savcenko & Bosch, 2012).

Those consist of 10 and 11 high-frequency tides, respectively. The model recommended by the

IERS (Petit & Luzum, 2010) consists of 71 tidal constituents, Artz et al. (2011) find that 83 terms

for polar motion and 63 terms for UT1−UTC are above the significance level (3σ). Gipson (1996)

includes 41 tidal constituents in his empirical tidal ERP model using a 3σ criterion as well but a

shorter time span of observations (17 years compared to 30 years for Artz et al. (2011)).

As this work seeks to use an empirical ocean tide model for the derivation of a high-frequency

ERP model, minor tidal constituents should be taken into account as well. Aside from hydro-

dynamic modeling, there are two possible ways to estimate tidal heights of those smaller but

significant constituents. The minor tides could, just as the major tides, be empirically estimated

from satellite altimetry data. However, empirical estimates have not been published so far and

the results from Bosch et al. (2014) show that further investigations on this topic are required.

The second possibility to include minor constituents in an ocean tide model is using the re-

sponse analysis method (Munk & Cartwright, 1966). The response—sometimes referred to as

black box—relates the input to the output signal. If both signals are known, one can compute

the response of the system. The quotient of input and output defines the admittance, therefore

the response analysis method is often referred to as admittance approach (Pugh & Woodworth,

2014).

As tidal analysis method, the response relates the equilibrium tidal potential (input) to the

tidal height variation (output) by the response function (Munk & Cartwright, 1966),

Z(ω) =
H(ω)
G(ω)

, (5.1)

where H(ω) is the tidal height, and G(ω) is the equilibrium tidal potential. Munk & Cartwright

(1966) found that it is a smooth function of frequency within the same frequency band and

can, thus, be used for the determination of minor tides. Using the assumption of smoothness,

the admittance—being the ratio of the tidal height and the equilibrium tidal potential—can be

linearly interpolated from two known (major) tides with neighboring frequencies. With a known

input (potential) and the calculated response function, it is possible to derive the tidal height of

a (near-by frequency) minor tide.

It is worth mentioning that different analysis institutions use different interpolation ap-

proaches. The IERS Conventions (Petit & Luzum, 2010) suggest linear interpolation for all tidal

ranges. The FES prediction software uses linear interpolation for diurnal tides and quadratic

spline interpolation for semi-diurnal tides (Le Provost et al., 1991). This work uses quadratic

interpolation in the final determination of tidal heights of minor tides. However, it should be

noted that different interpolation methods for minor tides can reach tidal differences of 2 cm or

more (W. Bosch, personal communication, 2014) and further studies on the smoothness of the

admittance is desirable.

The pivot waves, i.e., the major tidal constituents to be used for the linear interpolation of
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5.1 Minor tides and admittance

Table 5.9: Admittance interpolation coefficients for the
five largest diurnal tides not included in EOT11a. Tidal
frequencies and tide generating potential values are
taken from the HW95 catalog.

Minor tide Q1 O1 K1

145.545 0.003995 0.187924

M1 155.655 0.038978 0.028197

K1+ 165.565 -0.000383 0.135980

J1 175.455 -0.038992 0.083676

Oo1 185.555 -0.043020 0.061199

minor tides, are given in Table 6.7 in Petit & Luzum (2010). For example, to interpolate tide

K1+ (Doodson number 165.565), pivot waves O1 (145.555) and K1 (165.555) are used. If tidal

heights of minor tides are calculated as weighted average, linear interpolation coefficients for two

pivot waves (per minor tide) can be calculated. Those “height factors” are then multiplied with

tidal heights of the pivot waves giving the tidal height of the minor tide. The formulation of those

interpolation coefficients is as follows. The weighted average interpolation of the admittance can

be written as

Hm

Gm
=
�
ω2 −ωm

ω2 −ω1

�
H1

G1
+
�
ωm −ω1

ω2 −ω1

�
H2

G2
(5.2)

where subscript m denotes the minor tide, and subscripts 1 and 2 denote pivot waves 1 and 2,

respectively. The tidal height of the minor tide can be calculated using

Hm =
�
ω2 −ωm

ω2 −ω1
· Gm

G1

�
H1 +

�
ωm −ω1

ω2 −ω1
· Gm

G2

�
H2 (5.3)

where the two terms in brackets denote the scalar interpolation coefficients. Tables 5.9 and 5.10

summarize these coefficients for the largest minor tides not included in the empirical ocean tide

model EOT11a.

5.1.1 Admittance transferred to ocean tidal angular momentum

Due to the linear relationship between tidal heights and mass terms of ocean tidal angular mo-

mentum (likewise between tidal currents and motion terms), it is in principle also possible to in-

terpolate OTAM directly using the admittance theory instead of interpolating the tidal heights. As

OTAM-interpolation is a new concept, first studies—beyond this thesis–on that topic are desirable.

It, however, requires the ratio of OTAM and tidal potential to be a smooth function of frequency,

similar to the response function (Equation 5.1). Figure 5.6 shows this ratio for semi-diurnal and

diurnal tides for the mass term. OTAM amplitudes (mass term) are taken from the FES2012
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Table 5.10: Admittance interpolation coefficients for the six largest
semi-diurnal tides not included in EOT11a. Tidal frequencies and
tide generating potential values are taken from the HW95 catalog.

Minor tide 2N2 N2 M2 K2

µ2 237.555 1.045498 0.021376

ν2 247.455 0.164549 0.004868

255.545 0.000790 0.037163

L2 265.455 0.014254 0.110916

T2 272.556 0.003047 0.190827

K2+ 275.565 -0.000076 0.298707
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Figure 5.6: Admittance theory for the interpolation of OTAM. Shown are ratio values of OTAM
(mass term) and tidal potential amplitudes for diurnal (right) and semi-diurnal (left) partial tides.
Angular momentum values are derived from FES2012, tidal potential amplitudes are taken from
the HW95 catalog. Diurnal tides show a smooth and linear variation with frequency. OTAM
of minor tides in the diurnal band are, thus, suitable for linear interpolation. The non-linear
variation of admittance in the semi-diurnal band is not well suited for (linear) interpolation.
Units are 1025 kg s.
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Figure 5.7: Admittance theory for the interpolation of OTAM. Shown are ratio values of OTAM
(motion term) and tidal potential amplitudes for diurnal (right) and semi-diurnal (left) partial
tides. Angular momentum values are derived from the oceanic currents from FES2012, tidal
potential amplitudes are taken from the HW95 catalog. Units are 1025 kg s.

hydrodynamic assimilation model, tidal potential amplitudes from the HW95 catalog. All high-

frequency tidal constituents included in FES2012, except for S1 (due to the radiational part) and

the non-linear MKS2, are used. The admittance function is calculated using Z(ω) = Hi(ω)/G(ω)

where Hi stands for an OTAM component (i = 1 . . . 3 denotes components x , y , and z) of one par-

tial tide, and G(ω) is the equilibrium tidal potential. The smooth admittance variation of diurnal

tides (Figure 5.6, right) indicates a linear behavior of the response of OTAM to tidal potential. It

can therefore be stated that mass terms of angular momentum of diurnal tides can be interpolated

using the admittance theory to derive mass terms of OTAM of minor tides. For comparison, the

angular momentum components of partial tides K1, P1 and O1 have been interpolated using the

response method as described above. The mean error over all three components and all three

partial tides is 3.5·1023 kg m2/s or 9.3%. The clearly largest difference stems from the H3 (z)

component of O1 where interpolation of the OTAM component differs by 61.6% from the original

FES2012 OTAM value. All other components show a mutual agreement better than 15%. For the

admittance of semi-diurnal tides, however, the smooth variation with frequency cannot be seen.

This means that linear interpolation of the admittance function might not be suitable for the mass

term derivation of OTAM of semi-diurnal minor tides.

The admittance test calculations are also performed for the motion term of angular mo-

mentum. The relative OTAM are again derived from FES2012 by numerical integration of

oceanic currents, tidal potential amplitudes are taken from HW95. The admittance values,

Z(ω) = hi(ω)/G(ω), are shown in Figure 5.7. G(ω) denotes potential amplitudes as before,

hi(ω) are amplitudes of relative angular momentum changes for components i = 1 . . . 3. The

diurnal tides again show a smooth variation with frequency and, thus, allow linear interpola-

tion of OTAM. Semi-diurnal tides, on the other hand, have a larger variation, especially in the

z-component. However, the admittance using motion terms of OTAM are much smoother than

the admittance using mass terms. In particular the equatorial (x and y) components show a

quite linear dependence with frequency. Furthermore, this comparison includes more than twice
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5. New Earth rotation corrections based on empirical ocean tide models

as many semi-diurnal tides than diurnal tides (12 compared to 5), which also might increase the

noise level of the admittance in the semi-diurnal range.

To study the difference in estimating tidal heights using admittance interpolation and direct

OTAM interpolation, the following comparison is performed: Based on nine major tides from

EOT11a, tidal heights of the 25 largest minor tides are calculated using admittance theory. The

derived heights are integrated using Equations (3.25)–(3.26) and Simpson’s rule in order to cal-

culate the mass term of angular momentum. On the other hand, ocean tidal angular momentum

is directly interpolated from known values at major tides. The RMS and relative RMS values (see

Equations 4.14 and 4.15) for the comparison are shown in Table 5.11. Quadratic admittance

interpolation is used.

The comparison shows that there are only small differences between the two possibilities of

deriving the mass term of OTAM. The mutual agreement is largely within a few percent. The

largest difference occur at partial tide µ2 where the angular momentum values differ by 4.08%.

In addition, Table 5.11 contains a comparison with respect to OTAM from the hydrodynamic

ocean tide model FES2012. There can be seen large deviations from the EOT11a-derived values,

ranging from 27.1% to 97.9%. However, smaller tides are difficult to detect in satellite altimetry

and significant differences between ocean tide models can be expected. For example, the smallest

tidal constituent available in EOT11a, 2N2, differs by 10.8%, 61.3%, and 47.2%, for the x , y , and

z OTAM component, respectively.

5.2 Inclusion of minor tides

The comparison between admittance interpolation of OTAM and admittance interpolation of

tidal heights indicates that it is, in principle, possible to interpolate OTAM directly. Analogously,

OTAM motion terms can be interpolated from motion terms of major tidal constituents, which

are deduced from tidal currents using the inversion algorithm. In this way, 19 minor tides down

to 0.013 m2/s2 or 1.05% are considered for supplementing the nine tides of EOT11a by using

quadratic admittance interpolation of OTAM,

Hm =
3∑

i=1

 
Gm

Gi
Hi

3∏
k=1,k 6=i

ωm −ωk

ωi −ωk

!
. (5.4)

In Equation 5.4, H denotes OTAM values (mass term, motion term and x , y , and z components

are treated independently) of the minor tide (subscript m) and the major tides (subscript i),

respectively; G denotes the tide generating potential amplitudes; andω denotes tidal frequencies.

13 of the 19 additional tidal constituents—165.565,145.545, 175.455, 155.655, 185.555,

137.455, 135.645, 127.555, 155.455, 165.545, 185.565, 162.556, and 125.755—are part of the

diurnal band; six constituents—275.565, 255.545, 247.455, 237.555, 265.455, and 272.556—

are semi-diurnal tides.

The pivot waves, i.e., the known sampling points for the interpolation, are shown in Ta-
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Table 5.11: Comparison of OTAM derived from (1) admittance
interpolation of tidal heights and integration, and (2) direct
admittance interpolation of OTAM values. Mean values over
components x , y , and z are shown. The last column gives
(if available) corresponding RMS values for the comparison of
OTAM from the ocean tide model FES2012. Units: RMS in
1020 kg m2/s, relative RMS in percent.

Tide RMS (relative RMS) RMS w.r.t FES2012

165.565 9.7 (0.24%)

145.545 7.7 (0.07%)

275.565 11.6 (0.65%)

255.545 16.9 (0.78%)

247.455 (ν2) 18.3 (1.65%) 294.4 (27.1%)

175.455 (J1) 63.4 (1.41%) 1422.4 (34.1%)

155.655 (M1) 21.9 (1.97%)

237.555 (µ2) 28.6 (4.08%) 919.7 (97.9%)

265.455 (L2) 12.3 (0.77%) 1048.7 (57.9%)

272.556 (T2) 8.1 (0.77%) 300.7 (31.1%)

185.555 (OO1) 94.3 (2.05%)

137.455 (ρ1) 3.5 (0.20%)

135.645 4.4 (0.23%)

127.555 (σ1) 9.8 (0.37%)

155.455 7.9 (1.90%)

165.545 1.4 (0.25%)

185.565 60.6 (2.05%)

162.556 (π1) 3.3 (0.87%)

125.755 (2Q1) 9.1 (0.39%)

167.555 (ϕ1) 1.8 (0.26%)

227.655 (ε2) 18.2 (3.39%) 450.3 (58.1%)

263.655 (λ2) 3.2 (0.77%) 314.1 (72.8%)

245.645 3.5 (1.80%)

285.455 (η2) 7.3 (1.09%)

265.655 3.1 (0.77%)
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5. New Earth rotation corrections based on empirical ocean tide models

Table 5.12: Pivot waves for quadratic admittance interpolation.
The minor tides are ordered by their potential amplitude.

Minor tide Q1 O1 P1 K1 2N2 N2 M2 S2 K2

K′1 165.565 O1 P1 K1

145.545 Q1 O1 P1

K′2 275.565 M2 S2 K2

255.545 N2 M2 S2

ν2 247.455 2N2 N2 M2

J1 175.455 O1 P1 K1

M1 155.655 O1 P1 K1

µ2 237.555 2N2 N2 M2

L2 265.455 M2 S2 K2

T2 272.556 M2 S2 K2

OO1 185.555 O1 P1 K1

ρ1 137.455 Q1 O1 P1

135.645 Q1 O1 P1

σ1 127.555 Q1 O1 P1

155.455 O1 P1 K1

165.545 O1 P1 K1

185.565 O1 P1 K1

π1 162.556 O1 P1 K1

2Q1 125.755 Q1 O1 P1

ble 5.12. Two of the three pivot waves are taken to be the same as for the linear admittance

interpolation, i.e., as they are recommended by the IERS Conventions 2010 and shown in Ta-

ble 6.7 in Petit & Luzum (2010). The third major tide is selected to be the closest of the remaining

constituents. Eight minor tides are interpolated from pivot waves O1, P1, and K1, the remaining

five tides use the lower-frequency Q1 instead of K1. Half of the semi-diurnal minor tides are in-

terpolated using the high-frequency pivot tides K2, S2, and M2. Only one (255.545) is based on

N2 instead of K2 and the two remaining partial tides—ν2 and µ2—use 2N2 instead of S2.

OTAM values are interpolated quadratically from OTAM values of major tides. For the motion

term, major OTAM values from different continuity weight-solutions are used in the interpolation

scheme. These are taken to be consistent, i.e., similar weight values for the minor tides as for

the corresponding pivot waves (mentioned in Table 5.1) are used. The equatorial weight for

diurnal tides is, thus, taken to be 10000, the polar weight 1000. For semi-diurnal components,

the equatorial weight is 600, the polar weight is 600 or 1000. The values are summarized in

Table 5.13. The resultant OTAM for the 19 minor tides are shown in Table 5.14.

ERP variations are derived again using the equations from Section 3.7. These contain both the
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5.2 Inclusion of minor tides

Table 5.13: Weights on the continuity equation used for
the OTAM (motion term) interpolation of minor tides.

Minor tide Weight for h1, h2 Weight for h3

255.545 600 600

ν2 247.455 600 600

µ2 237.555 600 600

other semi-diurnals 600 1000

all diurnals 10000 1000

nine partial tides included in the empirical ocean tide model EOT11a and the 19 minor tides de-

rived from quadratic admittance interpolation of OTAM. The polar motion coefficients are found

in Table 5.15, those for UT1 and LOD in Table 5.16.
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5. New Earth rotation corrections based on empirical ocean tide models

Table 5.14: OTAM of minor tides from the empirical ocean tide model EOT11a. Shown are tidal
constituents not included in EOT11a with the largest tide generating potential. OTAM values
are derived using quadratic admittance interpolation. Tidal currents of major tides are estimated
using the algorithm described in Chapter 4. The weights for the continuity equation for the
respective components of major tides are written in Table 5.13. Amplitudes in 1025 kg m2/s,
phases in degrees.

Mass terms (heights) Motion terms (currents)

H1 H2 H3 h1 h2 h3

Tide Amp Pha Amp Pha Amp Pha Amp Pha Amp Pha Amp Pha

165.565 0.061 308.2 0.186 223.6 0.025 20.1 0.071 74.5 0.119 164.5 0.095 226.8

145.545 0.091 329.4 0.221 222.2 0.032 171.0 0.051 55.7 0.093 157.7 0.102 240.2

275.565 0.010 49.7 0.025 12.2 0.024 101.6 0.045 69.7 0.072 161.9 0.063 24.4

255.545 0.019 9.3 0.013 305.6 0.022 84.7 0.036 105.5 0.056 192.3 0.063 42.3

247.455 0.023 350.2 0.007 247.3 0.009 62.7 0.035 125.9 0.044 201.2 0.058 45.4

175.455 0.039 252.0 0.087 228.8 0.036 23.5 0.048 220.8 0.114 168.2 0.104 237.7

155.655 0.033 335.7 0.078 221.1 0.005 185.3 0.051 61.6 0.024 154.9 0.019 216.2

237.555 0.023 324.7 0.003 148.3 0.011 151.4 0.018 143.1 0.030 191.9 0.062 39.3

265.455 0.009 9.6 0.011 347.2 0.023 208.1 0.034 96.9 0.050 171.5 0.045 16.1

272.556 0.007 38.0 0.016 8.6 0.012 149.7 0.033 78.1 0.052 163.4 0.044 19.3

185.555 0.046 231.1 0.061 234.1 0.039 26.4 0.097 231.0 0.121 169.2 0.119 241.8

137.455 0.021 337.5 0.048 216.5 0.011 141.2 0.012 66.6 0.017 153.9 0.021 248.8

135.645 0.022 338.7 0.049 215.5 0.012 137.4 0.013 68.7 0.017 153.2 0.022 250.2

127.555 0.023 346.1 0.048 208.2 0.019 119.8 0.017 79.5 0.014 148.4 0.020 259.5

155.455 0.012 335.8 0.028 221.1 0.002 185.3 0.018 61.5 0.009 154.8 0.007 216.4

165.545 0.009 308.6 0.027 223.6 0.004 20.1 0.011 74.2 0.017 164.5 0.014 226.6

185.565 0.030 231.0 0.039 234.2 0.025 26.4 0.062 231.0 0.078 169.2 0.077 241.8

162.556 0.009 319.1 0.026 222.7 0.002 20.2 0.013 68.5 0.014 162.8 0.011 222.6

125.755 0.019 347.2 0.041 207.1 0.017 117.9 0.016 80.7 0.011 147.5 0.017 261.0
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5.2 Inclusion of minor tides

Table 5.15: Polar motion variation coefficients for 28 tides based on EOT11a. In addition to
nine tides included in the ocean tide model, OTAM values of 19 minor tides are derived from
quadratic admittance interpolation. Details about this model 2 is given in Table 5.8.

Tide Delaunay arguments Doodson Period pxs pxc p ys p yc

γ l l ′ F D Ω number (hours) (µas) (µas) (µas) (µas)

SQ1 1 -2 0 -2 0 -2 125.755 28.0062 -2.0 11.2 -11.2 -2.0

σ1 1 0 0 -2 -2 -2 127.555 27.8484 -2.4 12.7 -12.7 -2.4

1 -1 0 -2 0 -1 135.645 26.8728 -1.5 11.2 -11.2 -1.5

Q1 1 -1 0 -2 0 -2 135.655 26.8684 10.3 30.5 -30.5 10.3

ρ1 1 1 0 -2 -2 -2 137.455 26.7231 -1.3 10.7 -10.7 -1.3

1 0 0 -2 0 -1 145.545 25.8234 -3.0 45.5 -45.5 -3.0

O1 1 0 0 -2 0 -2 145.555 25.8193 65.1 146.1 -146.1 65.1

1 1 0 -2 0 -2 155.455 24.8492 1.5 -7.3 7.3 1.5

M1 1 -1 0 0 0 0 155.655 24.8332 4.0 -20.4 20.4 4.0

π1 1 0 -1 -2 2 -2 162.556 24.1321 -0.2 7.0 -7.0 -0.2

P1 1 0 0 -2 2 -2 163.555 24.0659 28.1 40.3 -40.3 28.1

1 0 0 0 0 1 165.545 23.9380 0.4 7.1 -7.1 0.4

K1 1 0 0 0 0 0 165.555 23.9345 -113.0 -158.0 158.0 -113.0

1 0 0 0 0 -1 165.565 23.9310 -2.8 -48.8 48.8 -2.8

J1 1 1 0 0 0 0 175.455 23.0985 -13.1 -18.2 18.2 -13.1

OO1 1 0 0 2 0 2 185.555 22.3061 -17.5 -8.1 8.1 -17.5

1 0 0 2 0 1 185.565 22.3030 -11.2 -5.2 5.2 -11.2

2N2 2 -2 0 -2 0 -2 235.755 12.9054 -6.6 -0.9 1.1 4.0

µ2 2 0 0 -2 -2 -2 237.555 12.8718 -6.8 1.3 0.0 -0.1

N2 2 -1 0 -2 0 -2 245.655 12.6583 -49.0 -8.7 3.9 33.2

ν2 2 1 0 -2 -2 -2 247.455 12.6260 -9.1 4.6 -0.6 -5.3

2 0 0 -2 0 -1 255.545 12.4215 10.1 -4.3 -1.1 7.7

M2 2 0 0 -2 0 -2 255.555 12.4206 -282.1 -24.6 51.1 167.8

L2 2 1 0 -2 0 -2 265.455 12.1916 8.3 1.0 -0.6 7.2

T2 2 0 -1 -2 2 -2 272.556 12.0164 -7.5 -3.3 2.2 -7.2

S2 2 0 0 -2 2 -2 273.555 12.0000 -132.3 53.1 56.1 84.3

K2 2 0 0 0 0 0 275.555 11.9672 -38.0 12.7 15.5 21.4

2 0 0 0 0 -1 275.565 11.9664 -9.8 -5.2 4.0 -9.8
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Table 5.16: ∆UT1 and ∆LOD variation coefficients for 28 tides tides based on EOT11a. In
addition to nine tides included in the ocean tide model, OTAM values of 19 minor tides are
derived from quadratic admittance interpolation. Details about this model 2 is given in Table 5.8.

Tide Delaunay arguments Doodson Period ∆UT1s ∆UT1c ∆LODs ∆LODc

γ l l ′ F D Ω number (hours) (µs) (µs) (µs) (µs)

SQ1 1 -2 0 -2 0 -2 125.755 28.0062 -0.1 -0.2 -1.3 0.8

σ1 1 0 0 -2 -2 -2 127.555 27.8484 -0.2 -0.3 -1.6 1.1

1 -1 0 -2 0 -1 135.645 26.8728 -0.4 -0.4 -2.1 2.1

Q1 1 -1 0 -2 0 -2 135.655 26.8684 3.8 -1.9 -10.8 -21.5

ρ1 1 1 0 -2 -2 -2 137.455 26.7231 -0.4 -0.4 -2.1 2.1

1 0 0 -2 0 -1 145.545 25.8234 -2.1 -1.9 -11.0 12.5

O1 1 0 0 -2 0 -2 145.555 25.8193 12.6 -10.0 -58.1 -73.4

1 1 0 -2 0 -2 155.455 24.8492 0.1 0.2 1.1 -0.6

M1 1 -1 0 0 0 0 155.655 24.8332 0.3 0.5 2.8 -1.7

π1 1 0 -1 -2 2 -2 162.556 24.1321 -0.2 -0.2 -1.0 1.0

P1 1 0 0 -2 2 -2 163.555 24.0659 3.8 -2.4 -14.8 -24.0

1 0 0 0 0 1 165.545 23.9380 -0.2 -0.2 -1.0 1.3

K1 1 0 0 0 0 0 165.555 23.9345 -13.2 8.0 50.5 83.2

1 0 0 0 0 -1 165.565 23.9310 1.5 1.1 7.0 -9.3

J1 1 1 0 0 0 0 175.455 23.0985 1.7 0.7 4.5 -11.4

OO1 1 0 0 2 0 2 185.555 22.3061 2.0 0.7 4.4 -13.5

1 0 0 2 0 1 185.565 22.3030 1.3 0.4 2.9 -8.8

2N2 2 -2 0 -2 0 -2 235.755 12.9054 -0.4 -0.4 -4.3 5.1

µ2 2 0 0 -2 -2 -2 237.555 12.8718 -0.5 0.5 6.4 6.0

N2 2 -1 0 -2 0 -2 245.655 12.6583 -2.7 -2.2 -25.7 32.0

ν2 2 1 0 -2 -2 -2 247.455 12.6260 -0.5 0.6 7.0 6.5

2 0 0 -2 0 -1 255.545 12.4215 0.6 -0.7 -8.7 -7.1

M2 2 0 0 -2 0 -2 255.555 12.4206 -14.9 -6.9 -84.1 181.1

L2 2 1 0 -2 0 -2 265.455 12.1916 0.3 -0.1 -0.6 -4.1

T2 2 0 -1 -2 2 -2 272.556 12.0164 -0.4 0.2 2.8 5.0

S2 2 0 0 -2 2 -2 273.555 12.0000 -8.0 -1.8 -22.1 100.1

K2 2 0 0 0 0 0 275.555 11.9672 -2.1 -0.3 -4.1 26.6

2 0 0 0 0 -1 275.565 11.9664 -0.6 0.5 6.5 7.9
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Chapter 6

Comparison and validation of

high-frequency Earth rotation models

The derived high-frequency ERP models from Chapter 5 are validated against the most precise

models currently available. In this work, ERP prediction models have been derived from the ocean

tide models FES2012, EOT11a, and HAMTIDE11a. From these “independent” models, FES2012

and EOT11a are validated in this chapter. In addition, due to precise space geodetic techniques,

ERP models have been derived empirically in recent years (see Chapter 2 for details). The GPS-

VLBI combined empirical model from Artz et al. (2012) is included in the subsequent comparison.

The following section briefly summarizes the least-squares method, a commonly applied pa-

rameter estimation process, also being used in the Vienna VLBI Software VieVS.

6.1 Parameter estimation process

A common method to solve overdetermined systems of possibly non-linear equations,

Φ(x ) = b (6.1)

or, linearized and in matrix notation,

Ax = b, (6.2)

is Least Squares. A is the coefficient or design matrix, either linear or linearized (Jacobian); x is

the parameter vector; and b is the observation or measurement vector. It minimizes the sum of

the squared residuals,

‖r‖2 = ‖Ax − b‖2, (6.3)

to estimate a set of (unknown) parameters. If the observations are samples of normally distributed

random variables, the least squares method gives the same results as the maximum likelihood
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6.1 Parameter estimation process

estimation (Mikhail, 1976, p. 48). In addition to the deterministic part of a system (functional

model), least squares typically includes a stochastic model to take into account the probabilistic

properties of the variables. In practice, the variance-covariance matrix Σ, including variances of

the observations as well as correlations between them, represents the stochastic behavior of the

system (Perović, 2005). For numerical reasons, the cofactor matrix Q is often used instead of Σ.

It can be calculated by

Q =
1

σ2
0

Σ, (6.4)

where σ2
0 is called variance factor. Then, least squares requires the sum of the weighted residuals

squared, r T Pr , to be minimized. P = Q−1 is the weight matrix. The parameter vector can be

estimated using

x̂= x0 + N−1AT Pl (6.5)

where N = AT PA is the normal equation matrix, l = b − Φ(x0) is the reduced observation vec-

tor, and x0 is the a priori parameter vector. The corrections to the observations, i.e., estimated

residuals, can be calculated using

r̂ = Ax̂ − l (6.6)

and the corrected observation vector is

b̂ = b+ r̂ . (6.7)

If the model Φ(x ) is linear in all unknowns x , no a priori parameters are necessary and the least

squares solution is given by

x̂= N−1AT Pb. (6.8)

The a posteriori auto-cofactor matrices of (1) the estimated parameters x̂ , (2) the estimated

residuals r̂ , and (3) the estimated observations b̂ are given by (Perović, 2005, p. 89)

Q x̂ = N−1 (6.9)

Q r̂ = P−1 − AN−1AT (6.10)

Q b̂ = AN−1AT = Qb −Q r̂ . (6.11)

Similar to Equation 6.4, covariance matrices are obtained by multiplication of the respective co-
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6. Comparison and validation of high-frequency Earth rotation models

factor matrix with the variance factor σ2
0. An unbiased estimate for σ2

0 is given by

σ̂2
0 =

r̂ T P r̂
n− u

(6.12)

where n is the number of observations, u is the number of estimated parameters and (n−u) is the

degree of freedom. For example, the variance-covariance matrix a posteriori for the estimated

parameters can be calculated using

Σ x̂ = σ̂2
0Q x̂ . (6.13)

As many physical problems are non-linear, the system needs to be linearized around some a priori

values of the parameters. An iterative method can be used to obtain the final solution. However,

‖r‖2 might have multiple local minima and the solution might fail to obtain the desired solution.

The least squares adjustment in the Vienna VLBI Software (VieVS) estimates unknown pa-

rameters as piece-wise linear offset functions at integer hours UTC. The partial derivatives of the

main VLBI observable, the time delay τ, with respect to the unknown parameters can be found

in Teke et al. (2012). More details on the parameterization is given in Table 6.1.

For the case of VLBI analysis, the least squares solution requires additional constraints to

handle the datum defect. The VLBI stations are bound to the terrestrial reference frame (TRF)

only by definition because the free network is actually not attached to the terrestrial coordinates

(the origin and the orientation of the coordinate system is not specified by the observations). This

creates a rank deficiency in the design matrix which makes the normal equation matrix singular.

A free VLBI network has typically a datum defect of six (degrees of freedom): three translations

and three rotations if both TRF coordinates and EOP are estimated.

Thus, to define a geodetic datum for a VLBI network, constraints on the station coordinates

are required. This can either be achieved by absolute constraints, i.e., fixing some stations, or by

imposing no-net-rotation (NNR) and no-net-translation (NNT) conditions on all or on a subset of

stations. The latter is achieved by minimizing the rotations and translations of a seven parameter

Helmert transformation from an a priori TRF.

6.2 Validation using VLBI observations

Using observations from space geodetic techniques allows to perform an external validation

of the ERP model and therewith also of the estimated barotropic currents. For this task VLBI

observations are used and analyzed using the Vienna VLBI Software (VieVS, Böhm et al., 2012),

an easy-to-use and flexible VLBI data analysis software.

87



6.2 Validation using VLBI observations

Hobart

Tigo Concepcion

Westford Wettzell

NyAlesund

Tsukuba

HartRAO

Badary

Onsala

Badary

Fortaleza
Katherine

Kokee Park
Medicina

NyAlesund Svetloe

Tigo Concepcion

Wettzell

Yarragadee

Figure 6.1: VLBI network of International VLBI Service for Geodesy and Astrometry (IVS) R1
(left) and R4 (right) sessions.
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Figure 6.2: VLBI network of IVS CONT11 sessions.

6.2.1 Input data

297 VLBI experiments between 2011 and 2013 from the International VLBI Service for

Geodesy and Astrometry (IVS; Schuh & Behrend, 2012) are used in the analysis. R1 and R4

sessions are 24-hours experiments carried out on Mondays and Thursdays, respectively. The

main goal of these weekly sessions is to provide EOP on a regular basis. The “R” stands for rapid

turnaround, meaning that results should be produced within 15 days after observation. Typical

VLBI networks for R1 and R4 sessions are shown in Figure 6.1.

In addition to the weekly R1 and R4 sessions, VLBI experiments from a continuous campaign

in 2011 are used in the analysis. The CONT11 campaign, consisting of 15 consecutive days of

continuous observations by 13 VLBI stations, was carried out in the second half of September

2011 and should demonstrate the highest achievable accuracy using VLBI systems. As one of the

scientific goals of CONT11 was the study of high-frequency ERP variations, these experiments are

well suited for the present work. The network of VLBI stations for CONT11 is shown in Figure 6.2.

6.2.2 Analysis strategy

Due to the correlation between precession-nutation and polar motion (cf. Section 2.1), these

parameters cannot be estimated simultaneously (Tesmer et al., 2001). Brzeziński (2012), how-

ever, describes a technique allowing the simultaneous determination of celestial pole offsets and

high-frequency ERP, the so-called complex demodulation. As this analysis technique has not been
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Table 6.1: Parametrization of the VLBI analysis for the validation of the ERP model.

Parameter A priori model Estimated Constraint

Ephemerides JPL421 - -

CRF ICRF2 - -

TRF VieTRF13 (Krásná et al., 2014) Offseta NNT/NNR

Polar motion Pre-solutionb [IERS 08 C04] + re-

spective high-frequency model

Hourly [offseta] 1 mas after 1 hour

UT1-UTC Pre-solutionb [IERS 08 C04] + re-

spective high-frequency model

Hourly [offseta] 1 ms after 1 hour

Prec.-Nut. Pre-solutionb [IAU2006/2000A] - [offseta] -

Hydrost. delay Saastamoinen (p0), VMF1 - -

Wet delayc - Hourly 1.5 cm after 1 hour

Trop. gradients - 6-hourly 0.5 mm after 6 hours

Clocksd - Hourly 1.3 cm after 1 hour
a Per session.
b EOP are estimated in a first step without estimating high-frequency ERP. Values in square brackets show the

prior parametrization.
c The wet delay was estimated as wet zenith delay.
d Clocks are estimated as offset plus linear trend plus quadratic term per clock with respect to a reference clock.

implemented, a two-step approach is used: In the first analysis run, celestial pole and polar motion

are estimated as daily offsets. In the first run, the IAU2006/2000A model and the IERS 08 C04

series are used as a priori models for precession-nutation and ERP, respectively. In the second run,

the daily estimates from the pre-solution are used as a priori values for EOP. Precession-nutation

values are then fixed to their a prioris and ERP are estimated hourly (high-frequency). The other

parameters, i.e., all but EOP, are estimated with an equal parametrization in both runs.

The remaining estimated parameters are terrestrial coordinates of the VLBI stations (including

NNT and NNR conditions), wet zenith delays, tropospheric gradients and clock parameters. The

parameters are estimated as piece-wise linear offsets at (fractions of) integer hours UTC. A least-

squares algorithm is used for the estimation. An overview of the parametrization as well as

constraints is given in Table 6.1.

6.2.3 Validation results

To assess the accuracy of the models, spectral components from hourly ERP residuals of x-pole,

y-pole, and UT1−UTC are calculated, for example

px(t) =
35∑
i=1

pxc cos(ωi t) + pxs sin(ωi t), (6.14)
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where px denotes the time series of one of the parameters (here: x-component of polar motion),

ωi are tidal frequencies, and pxc and pxs denote cosine- and sine-amplitudes, respectively.

Amplitudes and phases are derived in a least squares adjustment at 35 tidal frequencies:

Starting from 71 tidal constituents from the IERS Conventions 2010, 36 frequencies are removed

which would require observations >1 year to be separated from a larger constituent. Figure 6.3

shows estimated ERP from 2011 to 2013 and corresponding amplitude spectra using four a priori

high-frequency ERP models.

The spectral amplitudes of different models are then subtracted from the same amplitudes

derived from a reference solution. For example, if the reference model is FES2012, the difference

in amplitude spectrum (DAS) is calculated to a test model, e.g. EOT11a, as

DAS= AS
�
xp(FES2012)

�−AS
�
xp(EOT11a)

�
. (6.15)

AS stands for the estimated amplitude spectrum at 35 tidal frequencies (see Figure 6.3, right).

As post-fit residuals of ERP are expected to be smaller if a model gives more accurate a priori

prediction values, the DAS is suitable to assess the quality of the models. For example, if the

EOT11a model is more accurate, the ERP residuals are smaller than those using the FES2012

model and DAS will be positive. The DAS of three models, namely (1) the IERS Conventions

2010 model; (2) the empirical ERP model by Artz et al. (2011), IGG Bonn; and (3) the model

based on empirical ocean tides from EOT11a (model 1 in Table 5.8), with respect to a reference

model (FES2012, all available tidal constituents) are shown in Figure 6.4. The model based on

empirical ocean tides (EOT11a) shows mostly negative values, indicating that the ERP residuals

are larger than those using the reference model FES2012. However, for some tidal frequencies

the residuals decrease, such as for K2 or for J1. For partial tides N2, M2, and T2 some parameters

improve, whereas others deteriorate. Apart from a few larger differences between the reference

FES2012 and the EOT11a model, e.g., M2 or O1 in the pole coordinates, these two models show

a better mutual agreement than with the empirical IGG Bonn model. This is very likely due to

the fact that both FES2012 and EOT11a are based on satellite altimetry observations.

The number of tidal constituents might also play an important role in the accuracy of the four

ERP models. The model based on EOT11a includes only nine partial tides, whereas the others

include considerably more: FES2012 consists of 27 high-frequency tides, the IERS Conventions

2010 model incorporates 71 spectral lines—although it is primarily based on only 12 tides be-

fore applying the orthoweights functions—, and the empirical model from IGG Bonn includes

127 tidal constituents. The latter is expected to show the smallest post-fit ERP residuals as it

is basically fitted to VLBI and GNSS observations of more than 30 years. Table 6.2 shows the

number of tidal lines for all models where the respective model gives smallest ERP residuals. The

models IERS2010 and IGG Bonn give on average the smallest residuals. EOT11a performs best

for UT1−UTC where 12 of 35 spectral amplitudes are smaller than for all other models.

A common method to assess the accuracy of models in VLBI analysis is baseline scatter. The

so-called baseline length repeatability is the standard deviation of the baseline lengths (linear
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6. Comparison and validation of high-frequency Earth rotation models
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Figure 6.3: ERP estimates of 297 VLBI sessions between 2011 and 2014 using the high-frequency
a priori ERP model IGG Bonn (left column). Right column shows corresponding amplitude spectra
for (semi-)diurnal frequencies using four different a priori models (y-axis: Period in hours).
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6.2 Validation using VLBI observations
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Figure 6.4: Amplitude spectra differences of ERP residuals from a VLBI solution using differ-
ent high-frequency ERP models. Positive values indicate smaller ERP residuals and, thus, more
accurate prediction values compared to a reference model. The reference model is FES2012.
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6. Comparison and validation of high-frequency Earth rotation models

Table 6.2: Number of tidal frequencies where
the respective model gives smallest spectral ampli-
tudes.

Model Smallest residuals

X-pole Y-pole UT1−UTC Total

FES2012 10 6 5 21

IERS2010 8 13 10 31

IGG Bonn 11 12 8 31

EOT11a 6 4 12 22
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Figure 6.5: Standard deviation of baseline lengths (baseline length repeatability, BLR) from 297
VLBI sessions used for the model validation. The left image shows the repeatability using the
IERS Conventions 2010 model. The right image shows repeatability differences for three high-
frequency ERP models with respect to the reference (IERS Conventions 2010) model.

trend of station positions removed) over the whole observation period. The smaller it is, the

more accurately a priori models describe physical effects. The baseline length repeatability of

161 baselines (these are shown which are included in >10 VLBI sessions) is shown in Figure 6.5

(left). The time series of some baselines is split into parts due to episodic changes of the VLBI

reference point due to, e.g., earthquakes. For all these time periods, a standard deviation of

baseline length is computed, and the final value is derived using the mean value. In addition,

baselines whose estimated and a priori lengths differ by > 0.2 m are considered as being outliers.

The baseline length repeatability plots show hardly any visual differences between differ-

ent high-frequency ERP models, therefore only the reference model (IERS Conventions 2010) is

shown in Figure 6.5 (left). The right image shows the difference between baseline length re-

peatabilities using various Earth rotation models. There is no clear improvement for any of the

models. However, the number of baselines improving due to a change of a priori models allows

to assess their accuracy. The empirical model from IGG Bonn improves most baselines: 95 (59%)

of 161 baselines are improved if the empirical model is used instead of the conventional model.
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6.3 Final model validation

Table 6.3: Number of baselines for which the base-
line length repeatability decreases (improves) or in-
creases (degrade) if the high-frequency ERP model in
the first column is used instead of the IERS Conventions
2010 model. EOT11a denotes the model derived from
nine major tides included in the ocean tide model, i.e.,
model 1 in Table 5.8.

Model Improved baselines Degraded baselines

FES2012 77 84

IGG Bonn 95 66

EOT11a 77 84

The two models based on a long time-span of satellite altimetry observations do not show an

overall improvement: Both the FES2012 model as well as the EOT11a model improve 77 (48%)

baselines and degrade 84 baselines. That means that the models agree very well with respect to

baseline length repeatability but do not show an improvement compared to the IERS standard

model.

The validation results from baseline length repeatabilities largely agree with the analysis of

ERP residuals from the VLBI solutions. Both analysis strategies favor IGG Bonn and IERS2010 as

the two most accurate models. The models FES2012 and EOT11a degrade the majority of base-

lines and also show the least spectral components giving smallest residual amplitudes (Table 6.2).

6.3 Final model validation

Since nine major tides, as originally available from EOT11a, are presumed to be insufficient,

minor tides are included in the ERP models as follows. Up to 19 largest additional tidal con-

stituents are derived using the admittance approach on OTAM values. The influence of each

partial minor tide is examined and one final model including ten additional tidal constituents

is deduced for the ultimate comparison. All ERP models based on EOT11a are summarized in

Table 5.8. The final model is denoted as FF5. Compared to the IERS Conventions model, model

FF5 improves 74 (46%) of all 161 baselines indicating FF5 to predict ERP variations slightly less

accurately than the conventional model. Polar motion and UT1 variation coefficients of model

FF5 are written to Table A.1 and A.2, respectively.

The reference for the final validation is the empirical IGG Bonn model. It is compared to fol-

lowing models: FES2012, IERS Conventions 2010, and EOT11a FF5. The differences of spectra

for x-pole, y-pole and UT1−UTC is given in Figure A.1. The statistics, i.e., number of compo-

nents giving smallest residual amplitudes per model is shown in Table A.3. Similar to Figure 6.4,

model FF5 based on an empirical ocean tide model shows large post-fit ERP residuals at fre-

quencies of the major tidal constituents O1, K1, and M2. The spectral differences show a similar
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6. Comparison and validation of high-frequency Earth rotation models
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Figure 6.6: Baseline length repeatability differences of three high-frequency ERP models with
respect to the reference model IGG Bonn.

behavior for the FES2012-derived ERP model. Especially partial tide K1 has about twice as large

spectral differences for x-pole and y-pole when compared to the EOT11a-derived model. Also,

the amplitudes at frequencies of M2 and O1 show significant larger negative values than models

IERS2010 and IGG Bonn. Due to their derivation based on recent ocean tide models, a feasible

explanation are imperfect tidal heights and currents. In any case, the inversion algorithm for the

derivation of tidal currents from tidal heights, including all deficiencies as mentioned in Chap-

ter 4, is another source of error. However, from all 105 components (35 frequencies, three Earth

rotation parameters), 28% (29) give smallest spectral residual amplitudes using model FF5, indi-

cating the majority (equal IGG Bonn) of improved spectral components. UT1−UTC, in particular,

shows smallest amplitudes for 14 (40%) components of 35 frequencies. The reference model IGG

Bonn gives generally the smallest residuals, which is also emphasized by the number of smallest

components (29, equal EOT11a FF5). Interestingly, the empirical model gives worse results for

UT1−UTC than for polar motion, possibly due to a larger weight on GNSS than VLBI observa-

tions. Only seven of 35 UT1−UTC spectral components (20%) show smallest residuals using IGG

Bonn. The IERS2010 model again performs well in this comparison, improving 27% or 28 of all

ERP components.

The baseline length repeatability for all four models is compared as well. Figure 6.6 shows

differences in baseline scatter. If the number of improved baselines is compared, there can be

found a slightly different result than is indicated by the spectral comparison. The IGG Bonn model

still performs best, i.e., shows the smallest baseline length standard deviation for the majority

of baselines. The FF5 model shows results similar to the remaining two models and improves

64 (40%) of all 161 baselines. Models FES2012 and IERS2010 are slightly more accurate and

improve 68 (42%) and 66 (41%) baselines, respectively. The number of improved baselines with

respect to the reference IGG Bonn is shown in Table 6.4.

Thus, model FF5 performs similarly as the IERS conventional model with respect to the re-
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6.3 Final model validation

Table 6.4: Number of baselines for which the baseline
length repeatability decreases (improves) or increases (de-
grade) if the high-frequency ERP model in the first column is
used instead of the empirical IGG Bonn model. EOT11a FF5
denotes the model derived from EOT11a, supplemented by
minor tides through OTAM admittance interpolation.

Model Improved baselines Degraded baselines

FES2012 68 93

IERS2010 66 95

EOT11a FF5 64 97

peatability of VLBI baselines between 2011 and 2013. The performance is, furthermore, slightly

superior to the one based on the assimilation ocean tide model FES2012. The majority of base-

lines, however, is improved when the empirical ERP model IGG Bonn is used in VLBI analysis.
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Chapter 7

Summary and conclusions

Accurate predictions of short-period Earth rotation variations are required for the analysis of

space geodetic techniques, especially when parameters are fixed to a priori values due to sparse

observations. In addition, studies in this field extend the knowledge of geophysical processes

leading to irregularities of Earth rotation. The main part of these high-frequency variations are

due to ocean tides. Global and accurate observations of the ocean surface are available from

satellite altimetry observations which have been used to deduce the standard prediction model

of ERP mentioned in the IERS Conventions 2010. However, this model has deficiencies which

might lead to biases in geodetic products. Therefore, an updated model of (semi-)diurnal ERP

variations is desired, in order to reduce the systematic discrepancies between observations and

predictions. The main goal of the present thesis is to contribute to such a new high-frequency

ERP model based on ocean tides. A secondary objective is to verify, if an empirical ocean tide

model, being the most independent source of data for this task, can be used to derive accurate

ERP prediction values.

Empirical ocean tide models do not include any hydrodynamic assumptions and, thus, lack

of oceanic currents. The information of the flow is, however, required to compute the motion

term of angular momentum. In order not to introduce any inconsistencies, tidal currents should

be derived consistently with the given tidal height field. The estimation of oceanic currents from

measured elevations is, therefore, one important and major task of the present thesis. The sim-

ple approach, described by Ray (2001), uses simplified hydrodynamic equations and continuity

constraints solved in one global inversion process.

Both velocity amplitudes and phases show a very good mutual agreement in a comparison

of the inversion algorithm and hydrodynamic models. One issue is the noise in tidal heights of

the ocean surface. The high-frequency alternating elevation data map into estimated volume

transports and, due to the gradient operator in the hydrodynamic equation, cause even increased

noise in the results. This is one likely reason why the weight on the continuity equation in the

inversion process is a crucial factor for the accuracy of the estimates. On the OTAM level, results

can be easily compared to those from hydrodynamic ocean tide models.

The comparison of resultant OTAM values indicates the necessity for different weights for
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7.1 Discussion of validation results

different components. Equatorial components of diurnal tides require a large weight of 10000

compared to weights between 400 and 800 for the polar component. Semi-diurnal tides require

equatorial weights between 100 and 200, polar components should be weighted between 400

and 2000, depending on tidal constituent.

The use of different weights, i.e., different inversion solutions, for the final set of OTAM val-

ues are a drawback of the presented model, especially due to the fact that model consistency is

reduced. However, the RMS values of OTAM differ by 40% or more between weights of 400 and

10000. This difference is presumed to be too much as the majority of components between two

hydrodynamic assimilation models agree within 10%. If variable weights are used, OTAM values

from estimated volume transports and assimilation models differ by 4.7–19.7% (mean over x, y,

and z component).

The empirical ocean tide model EOT11a includes tidal height variations of nine tidal con-

stituents. However, additional minor partial tides have a significant effect on OTAM values and,

therefore, have to be included in the computation. A widely used method is to interpolate minor

tides using the ratio of tidal height and tidal potential which is assumed to be a smooth function

of frequency. This work uses another approach: OTAM values instead of tidal heights are inter-

polated similarly to classical admittance interpolations. Thus, ratios of OTAM and tidal potential

are interpolated quadratically to derive a final model including the effect of minor tides.

Several models including different sets of minor tides are developed and used in the analysis

of VLBI observations. Best results are found when ten minor tides are included additionally to

the nine major tides Q1, O1, P1, K1, 2N2, N2, M2, S2, and K2 of EOT11a.

7.1 Discussion of validation results

For the validation, several ERP prediction models are applied a priori in the analysis of VLBI

observations using the Vienna VLBI Software VieVS. These are (1) FES2012, a model based on

a recent hydrodynamic assimilation ocean tide model including 27 tidal constituents; (2) the

standard model mentioned in the IERS Conventions 2010, for which an updated model is highly

desirable; (3) the empirical model IGG Bonn, deduced from GPS and VLBI observations and,

therefore, presumed to yield smallest residuals; and (4) model EOT11a FF5 based on empirical

ocean tides supplemented by ten minor tides derived from quadratic admittance interpolation of

OTAM values. Tidal currents of major tides are estimated using the inversion algorithm.

High-frequency ERP are estimated from VLBI observations between 2011 and 2013 using the

four a priori models. Differences of ERP residuals spectra indicate, as expected, that model IGG

Bonn represents the smallest residuals. The FES2012 model, similar to EOT11a FF5, shows larger

discrepancies at frequencies of several major tides, such as O1, K1, or M2. Still, the newly derived

model yields, together with IGG Bonn, the largest number of smallest spectral amplitudes. The

IERS conventional model is similarly accurate in this comparison, showing smallest ERP residual

spectral amplitudes for 27% of all components (IGG Bonn, EOT11a FF5: 28%).
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7. Summary and conclusions

However, a more external validation can be performed using standard deviations of baseline

lengths. Even though differences of repeatabilities are small, they are a good measure of model

accuracy. The empirical model IGG Bonn improves the majority of baselines and can, therefore,

be assumed to be the most accurate ERP prediction model from this comparison. The model

EOT11a FF5 performs slightly worse than both FES2012 and the conventional model, improving

64 (40%) of 161 baselines compared to IGG Bonn. FES2012 (68 or 42% improved baselines)

and IERS2010 (66 or 41% improved baselines) show larger numbers when comparing baseline

length repeatabilities.

7.2 Concluding remarks and outlook

It is shown that an empirical ocean tide model can serve as independent source for the devel-

opment of an accurate ERP prediction model. The approach for the derivation of oceanic currents

presented by Ray (2001) is adequate for the task of determining motion terms of angular momen-

tum. The number of tides available in EOT11a is, however, not sufficient so that additional tidal

constituents have to be derived using admittance assumptions. The transfer from interpolating

OTAM values instead of tidal heights is shown to be feasible in order to include the effect of mi-

nor tides. Nevertheless, empirical estimation of minor tides from altimetry would be preferable

to interpolation.

A loss of consistency is clearly introduced due to the use of different continuity equation

weights for the final set of angular momentum. If the main reason for large weights is noise in

tidal heights, revised ocean tide models might allow the use of more consistent weights in the

OTAM determination. The derived model EOT11a FF5 is on the same level of accuracy as other

models with respect to VLBI baseline length repeatabilities and spectral comparison for the chosen

time period and might serve as updated and independent prediction model of ERP variations in

the analysis of space geodetic techniques. Empirical ERP models are still superior to those based

on ocean models, however, with the disadvantage of possibly overlaying other geophysical effects.

Finally, it is worth mentioning that the analysis of ERP residuals need not draw the same

conclusions as an external validation. In the present validation, model EOT11a FF5 improves the

lowest number of baselines but yields, together with IGG Bonn, most smallest residual amplitudes

in comparison with the other models.

The validation in this thesis covers three years of VLBI observations. However, as VLBI tele-

scopes haven been observing since 1979, a longer time span for the comparison is by all means

desirable. Empirical models from only one space geodetic technique do not fully agree in inter-

technique comparisons, a validation using other techniques is, therefore, inevitable. A model val-

idation by GNSS is even more important, because polar motion products of the IERS are mostly

based on observations from satellite systems.

Satellite altimetry will undergo further improvements in the next years, from more precise

observations, to enhanced analysis strategies, and also revised available geophysical models. This,
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7.2 Concluding remarks and outlook

in turn, will also facilitate the derivation of more accurate independent Earth rotation models for

improved scientific products and a better understanding of processes in geodesy and geophysics.
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Appendix A

Auxiliary material

Table A.1: Polar motion variation coefficients for model FF5 based on EOT11a. In addition
to nine tides included in the ocean tide model, OTAM values of ten minor tides are derived
from quadratic admittance interpolation. Details about this model FF5 is given in Table 5.8.

Tide Delaunay arguments Doodson Period xp sin xp cos yp sin yp cos

γ l l ′ F D Ω number (hours) (µas) (µas) (µas) (µas)

1 -1 0 -2 0 -1 135.645 26.8728 -1.5 11.2 -11.2 -1.5

Q1 1 -1 0 -2 0 -2 135.655 26.8684 10.3 30.5 -30.5 10.3

ρ1 1 1 0 -2 -2 -2 137.455 26.7231 -1.3 10.7 -10.7 -1.3

O1 1 0 0 -2 0 -2 145.555 25.8193 65.1 146.1 -146.1 65.1

1 1 0 -2 0 -2 155.455 24.8492 1.5 -7.3 7.3 1.5

P1 1 0 0 -2 2 -2 163.555 24.0659 28.1 40.3 -40.3 28.1

1 0 0 0 0 1 165.545 23.9380 0.4 7.1 -7.1 0.4

K1 1 0 0 0 0 0 165.555 23.9345 -113.0 -158.0 158.0 -113.0

1 0 0 0 0 -1 165.565 23.9310 -2.8 -48.8 48.8 -2.8

OO1 1 0 0 2 0 2 185.555 22.3061 -17.5 -8.1 8.1 -17.5

1 0 0 2 0 1 185.565 22.3030 -11.2 -5.2 5.2 -11.2

2N2 2 -2 0 -2 0 -2 235.755 12.9054 -6.6 -0.9 1.1 4.0

µ2 2 0 0 -2 -2 -2 237.555 12.8718 -6.8 1.3 0.0 -0.1

N2 2 -1 0 -2 0 -2 245.655 12.6583 -49.0 -8.7 3.9 33.2

2 0 0 -2 0 -1 255.545 12.4215 10.1 -4.3 -1.1 7.7

M2 2 0 0 -2 0 -2 255.555 12.4206 -282.1 -24.6 51.1 167.8

L2 2 1 0 -2 0 -2 265.455 12.1916 8.3 1.0 -0.6 7.2

S2 2 0 0 -2 2 -2 273.555 12.0000 -132.3 53.1 56.1 84.3

K2 2 0 0 0 0 0 275.555 11.9672 -38.0 12.7 15.5 21.4
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Table A.2: UT1 and LOD variation coefficients for model FF5 based on EOT11a. In
addition to nine tides included in the ocean tide model, OTAM values of ten minor tides
are derived from quadratic admittance interpolation. Details about this model FF5 is
given in Table 5.8.

Tide Delaunay arguments Doodson Period UT1 LOD

γ l l ′ F D Ω number (hours) sin cos sin cos

(µs) (µs) (µs) (µs)

1 -1 0 -2 0 -1 135.645 26.8728 -0.4 -0.4 -2.1 2.1

Q1 1 -1 0 -2 0 -2 135.655 26.8684 3.8 -1.9 -10.8 -21.5

ρ1 1 1 0 -2 -2 -2 137.455 26.7231 -0.4 -0.4 -2.1 2.1

O1 1 0 0 -2 0 -2 145.555 25.8193 12.6 -10.0 -58.1 -73.4

1 1 0 -2 0 -2 155.455 24.8492 0.1 0.2 1.1 -0.6

P1 1 0 0 -2 2 -2 163.555 24.0659 3.8 -2.4 -14.8 -24.0

1 0 0 0 0 1 165.545 23.9380 -0.2 -0.2 -1.0 1.3

K1 1 0 0 0 0 0 165.555 23.9345 -13.2 8.0 50.5 83.2

1 0 0 0 0 -1 165.565 23.9310 1.5 1.1 7.0 -9.3

OO1 1 0 0 2 0 2 185.555 22.3061 2.0 0.7 4.4 -13.5

1 0 0 2 0 1 185.565 22.3030 1.3 0.4 2.9 -8.8

2N2 2 -2 0 -2 0 -2 235.755 12.9054 -0.4 -0.4 -4.3 5.1

µ2 2 0 0 -2 -2 -2 237.555 12.8718 -0.5 0.5 6.4 6.0

N2 2 -1 0 -2 0 -2 245.655 12.6583 -2.7 -2.2 -25.7 32.0

2 0 0 -2 0 -1 255.545 12.4215 0.6 -0.7 -8.7 -7.1

M2 2 0 0 -2 0 -2 255.555 12.4206 -14.9 -6.9 -84.1 181.1

L2 2 1 0 -2 0 -2 265.455 12.1916 0.3 -0.1 -0.6 -4.1

S2 2 0 0 -2 2 -2 273.555 12.0000 -8.0 -1.8 -22.1 100.1

K2 2 0 0 0 0 0 275.555 11.9672 -2.1 -0.3 -4.1 26.6

Table A.3: Number of tidal frequencies where the re-
spective model gives smallest spectral amplitudes.

Model Smallest residuals

X-pole Y-pole UT1−UTC Total

FES2012 10 5 4 19

IERS2010 6 12 10 28

IGG Bonn 10 12 7 29

EOT11a FF5 9 6 14 29
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Figure A.1: Amplitude spectra differences of ERP residuals from a VLBI solution using different
high-frequency ERP models. Positive values indicate smaller ERP residuals and, thus, more ac-
curate prediction values compared to a reference model. Reference is the empirical IGG Bonn
model.
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