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Abstract The deformation of the anelastic Earth as a

response to external forces from the Moon and Sun is

characterized with proportionality parameters, the so-

called Love and Shida numbers. The increasing pre-

cision and quality of the VLBI (Very Long Baseline

Interferometry) measurements allow determining those

parameters. In particular, the long history of the VLBI

data enables the estimation of Love and Shida numbers

at the low frequencies with the longest period of a tidal

wave at 18.6 years. In this study we analyze 27 years

of VLBI measurements (1984.0 - 2011.0) following the

recent IERS Conventions 2010. In several global solu-

tions, we estimate the complex Love and Shida num-

bers of the solid Earth tides for the main long-period

tidal waves. Furthermore, we determine the Love and

Shida numbers of the rotational deformation due to po-

lar motion, the so-called pole tide.

Keywords Love and Shida numbers, solid Earth tides,
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1 Introduction

Deformation of the Earth due to solid Earth tides is

caused by tidal forces arising from the gravitation at-

traction of celestial bodies surrounding the Earth. The
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displacement of the Earth is proportional to the tidal

potential by factors which reflect the amount by which

the surface of the Earth responds to the tidal forces. The

proportionality numbers which link the tidal potential

to the surface displacement are so-called Love (h) and

Shida (l) numbers. For a basic Earth model where the

Earth is considered to be spherical, non-rotating, elas-

tic and isotropic the Love and Shida numbers are de-

pendent on the degree n of the tidal potential V t
n. The

displacement vector ∆dt induced by the tidal potential

in the local coordinate system (radial (r̂), east(ê), north

(n̂)) is then written as:
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where Φ and Λ are geocentric coordinates of the sta-

tion and g is gravitational acceleration. The recent the-

ory of solid Earth tidal displacements is based upon

the model of Wahr (1981) who considered the effects

of rotation and ellipticity of the Earth. The deforma-

tion of the Earth’s surface caused by lunisolar tides is

based on the sum of the tidal potential with spherical

harmonic degrees n and orders m, where the effective

values of Love and Shida numbers additionally depend

on the frequency of the tidal wave. In the long-period

band the frequency dependence is mainly due to man-

tle anelasticity. The anelasticity model adopted in Pe-

tit and Luzum (2010) is the one from Widmer et al.

(1991). The variation of the Love and Shida number

across the zonal tidal band (h20 and l20) is described by

equations (2) and (3) (formula (7.4) in Petit and Luzum

(2010)). Love and Shida numbers from these equations

are also tabulated in the IERS Conventions 2010 and

we used them as a priori values for their estimation in
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the global adjustment.

h20 = 0.5998−9.96×10−4
·X, (2)

l20 = 0.0831−3.01×10−4
·X, (3)

where

X =

{

cot
απ

2

[
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+ i

(

fm

f

)α}

. (4)

f is the frequency of the zonal tidal constituent, fm is

a reference frequency equivalent to a period of 200 s,

and the power law index α = 15. To ensure 1 mm ac-

curacy by the computed displacement of the crust five

tidal waves have to be taken into account (Petit and

Luzum, 2010). In addition for purpose of this work,

the annual tidal wave S a was added to this group. The

tidal waves are described in Table 1. The frequency-

dependent correction of the displacement caused by the

long-period tides follows from Mathews et al. (1997,

equation (2)):
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H f is the amplitude of a tidal term of frequency f

defined by the convention of Cartwright and Tayler

(1971), θ f is the argument for the tidal constituent with

the frequency f , and δh f and δl f are the corrections to

the Love and Shida numbers of degree two.

Similar to the deformation of the solid Earth due to

the tidal potential, there is deformation of the crust ∆dc

caused by variations in centrifugal potential Vc. This

change of centrifugal potential arises from variations

in orientation of the rotation axis, i.e. from variations

in the pole position. The direct response of the crust

is called the pole tide and its maximum in radial di-

rection can reach 25 mm, with a maximum horizontal

displacement of about 7 mm (Petit and Luzum, 2010).

The perturbation in the centrifugal potential caused by

Table 1 Period and amplitude H f of six zonal tidal waves for

which the Love and Shida numbers were estimated.

Name Period Cartwright-Tayler

[solar days] amplitude [mm]

Ω1 6797.38 (= 18.6 yr) 27.9

S a 365.25 −4.9

S sa 182.62 −30.9

Mm 27.55 −35.2

M f 13.66 −66.7

M′
f

13.63 −27.6

the changes in position of the rotation axis can be writ-

ten as (Wahr, 1985; Petit and Luzum, 2010):

Vc(Θ,Λ) = −
Ω2r2

⊕

2
sin2Θ(m1 cosΛ+m2 sinΛ), (6)

where r⊕ is the geocentric distance to the station

(6378000 m), Θ and Λ geocentric co-latitude and

longitude of the station. Ω is the mean angular velocity

of the Earth rotation (7.292115e-5 rad/s) and m1

with m2 describe the time-dependent offset of the

instantaneous rotation pole from the mean rotation

pole.

By using the basic relation between the displacement

vector and the perturbing potential (equation (1)) the

final expression for the pole tide at a particular station

follows as:

∆dc =dRc sin2Θ(m1 cosΛ+m2 sinΛ) r̂

−dT c cosΘ(m1 sinΛ−m2 cosΛ) ê

−dT c cos2Θ(m1 cosΛ+m2 sinΛ) n̂,

(7)

where dRc and dT c are given in [m/as] as:

dRc = h20

−Ω2r2
⊕

2g
·π/180/3600,

dT c = l20

−Ω2r2
⊕

g
·π/180/3600.

(8)

The nominal values for the Love and Shida numbers

are computed following equations (2) and (3) for the

frequency appropriate to the pole tide, where we used

the frequency of the Chandler wobble. The theoretical

pole tide Love number is then 0.6206 and the Shida

number 0.0894.

2 VLBI analysis

We used the Vienna VLBI Software VieVS (Böhm

et al., 2012) to analyze 4.6 million observations from

1984.0 to 2011.0 included in 3360 24-hour sessions of

the International VLBI Service for Geodesy and As-

trometry (IVS; (Schuh and Behrend, 2012)). For the

modeling of the theoretical time delays the IERS Con-

ventions 2010 (Petit and Luzum, 2010) were followed,

with the exception of applying a priori corrections on

station coordinates due to non-tidal atmospheric load-

ing (Petrov and Boy, 2004) which is a common proce-

dure in the VLBI analysis. For each session the normal

equation (NEQ) system was formulated including the

station coordinates and velocities, source coordinates,
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Earth orientation parameters, zenith wet delays, tropo-

spheric gradients, clock parameters, and the Love and

Shida numbers. In the module Vie GLOB (Krásná et

al., 2013a) of VieVS a common adjustment of all ses-

sions was carried out after local parameters (connected

only to a single session) were reduced from the normal

equations per session in a first step. The NEQ system

of the global solution contains only the station coor-

dinates, station velocities, source coordinates, and the

Love and Shida parameters.

3 Love and Shida numbers for the

long-period tides

To ensure an accuracy of 0.05 mm for the computed

radial displacements of the crust in the long-period

band, five tidal waves (M′
f
, M f , Mm, S sa, and Ω1)

have to be taken into account (Petit and Luzum,

2010). Three solutions for the estimation of the zonal

Love and Shida numbers were performed. In the first

solution S1 the default parametrization was applied

and Love and Shida numbers for the five main zonal

tidal waves were estimated. In the second solution

S2 hydrology loading corrections (provided by the

NASA GSFC VLBI group (Eriksson and MacMillan;

http://lacerta.gsfc.nasa.gov/hydlo)) were additionally

applied a priori to the station coordinates. These

corrections mainly contain annual and semi-annual

signals. Solution S3 is identical to solution S2, but

the Love and Shida numbers for the annual tidal

wave S a were also estimated. The real parts of the

estimated complex Love and Shida numbers are listed

in Tables 2 and 3. The second column of both tables

contains the theoretical real part of the complex Love

and Shida numbers (Mathews et al. (1997) and Petit

and Luzum (2010)). Columns three, four and five

list the real parts of the estimated Love and Shida

numbers from solution S1, S2, and S3. In the last

columns the differences between the a priori and the

estimated Love and Shida numbers from solution S3,

expressed as differences in amplitudes of the tidal term

in millimeters are given:

δRt
f =

√

5

4π
H f δh

R
f , (9)

δT t
f =

3

2

√

5

4π
H f δl

R
f . (10)

The real parts of the Love numbers from solu-

tion S1 show a relatively large difference of about

0.073 ± 0.019 and −0.078 ± 0.009 with respect to

their theoretical values for the tidal waves Ω1 and S sa.

The application of hydrology loading corrections on

station coordinates (solution S2) leads to a decrease

of the difference between the theoretical and esti-

mated values of the Love number for the Ω1 wave

(0.003 ± 0.020), whereas the expected improvement

of the estimated Love number of the semi-annual tide

S sa is small (the difference to the theoretical value is

now −0.065 ± 0.009). In the third solution S3 the ad-

ditional estimation of the Love number for the annual

tide S a causes another slight decrease of the difference

between estimated and theoretical Love number for

the semi-annual term S sa (−0.055 ± 0.010). The

larger formal error of the estimated Love number for

the annual tide S a is related to its small amplitude. The

estimated Love number of the semi-annual tide S sa,

which corresponds to a 1.07 ± 0.19 mm difference

in the radial amplitude of the crustal displacement

with respect to the theoretical value, may reflect defi-

ciencies in the a priori station displacement modeling

of long-period origin. The larger formal error of the

displacement amplitude for the Ω1 tide is likely due

to the not sufficiently long history of observations. A

more detailed description of the analysis including our

estimates of the imaginary parts of the Love and Shida

numbers is given in Krásná et al. (2013b).

4 Love and Shida number for the pole

tide

Several solutions were computed where the Love and

Shida numbers for the polar motion were estimated. In

these solutions the influence of a priori modeling of the

mean pole and the application of hydrology loading

corrections on station coordinates were investigated.

The analysis of VLBI data was done according to the

default parametrization with the following differences

between the solutions:

• P1 - default parametrization (cubic function for

mean pole (IERS Conventions 2010)),

• P2 - amplitudes of annual and semi-annual station

position variations were estimated as additional pa-

rameters in the global solution and a cubic function

for the mean pole was applied,

• P3 - as P2 but the mean pole was modeled by a

linear approximation,

• P4 - as P2 but the mean pole was set to zero,

• P5 - as P1 but hydrology loading corrections were

applied a priori on the station coordinates, ampli-
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Table 2 Real parts of the complex Love numbers hR
f

for the long-period tidal waves estimated within three different solutions. ∆δRt
f

shows the difference in displacements when using solution S3 and values given in IERS Conventions 2010.

Name hR
f

hR
f

hR
f

hR
f

∆δRt
f

from (2) this work S1 this work S2 this work S3 from S3 [mm]

Ω1 0.6344 0.7071 ± 0.0188 0.6372 ± 0.0199 0.6372 ± 0.0199 0.05 ± 0.35

S a 0.6207 - - 0.5708 ± 0.0612 0.15 ± 0.19

S sa 0.6182 0.5405 ± 0.0090 0.5531 ± 0.0094 0.5635 ± 0.0095 1.07 ± 0.19

Mm 0.6126 0.5965 ± 0.0076 0.5887 ± 0.0079 0.5905 ± 0.0079 0.49 ± 0.18

M f 0.6109 0.6036 ± 0.0042 0.6052 ± 0.0043 0.6049 ± 0.0043 0.25 ± 0.18

M′
f

0.6109 0.6024 ± 0.0100 0.5878 ± 0.0105 0.5893 ± 0.0105 0.38 ± 0.18

Table 3 Real parts of the complex Shida numbers lR
f

for the long-period tidal waves estimated within three different solutions. ∆δT t
f

shows the difference in displacements when using solution S3 and values given in IERS Conventions 2010.

Name lR
f

lR
f

lR
f

lR
f

∆δT t
f

from (3) this work S1 this work S2 this work S3 from S3 [mm]

Ω1 0.0936 0.1147 ± 0.0044 0.1079 ± 0.0047 0.1078 ± 0.0047 0.37 ± 0.12

S a 0.0894 - - 0.1079 ± 0.0146 −0.09 ± 0.07

S sa 0.0886 0.0955 ± 0.0021 0.0954 ± 0.0022 0.0984 ± 0.0023 −0.28 ± 0.07

Mm 0.0870 0.0851 ± 0.0018 0.0819 ± 0.0019 0.0825 ± 0.0019 0.15 ± 0.06

M f 0.0864 0.0855 ± 0.0010 0.0865 ± 0.0010 0.0864 ± 0.0010 0.01 ± 0.06

M′
f

0.0864 0.0842 ± 0.0024 0.0771 ± 0.0025 0.0772 ± 0.0025 0.24 ± 0.07

tudes of annual station position variations were es-
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Fig. 1 Real parts of the five zonal Love and Shida numbers

(black color) estimated together with the Love and Shida num-

bers for the pole tide (grey color) in solution P5. The solid

black lines represent the theoretical values given by equations (2)

and (3).

Table 4 Pole tide Love and Shida numbers.

solutions h2 - pole tide l2 - pole tide

theoretical value 0.6206 0.0894

P1 0.4638 ± 0.0092 0.1038 ± 0.0023

P2 0.5354 ± 0.0118 0.0943 ± 0.0029

P3 0.5353 ± 0.0118 0.0946 ± 0.0029

P4 0.5353 ± 0.0118 0.0956 ± 0.0029

P5 0.5495 ± 0.0109 0.0953 ± 0.0028

(Petrov, 1998) 0.65 ± 0.20 0.11 ± 0.05

(Gipson and Ma, 1998) 0.636 ± 0.025 0.087 ± 0.007

timated as additional parameters in the global so-

lution together with the complex Love and Shida

numbers for the five main zonal tidal waves.

In Table 4 results of the estimated Love and Shida

numbers from the five solutions are summarized. The

largest difference to the theoretical value appears in so-

lution P1. In solution P2 the determination of the re-

maining annual and semi-annual signals in the station

coordinates (especially height) within the global ad-

justment brings the estimated Love number closer to its

theoretical value. The Love numbers obtained from so-

lutions P2, P3 and P4 are almost identical. This shows

that the modeling of the mean pole (cubic, linear, or

a total omission) does not have any influence on the

Love and Shida number estimates. In solution P5 the

hydrology loading corrections were applied a priori on

the station coordinates and in the global adjustment

the complex Love and Shida for the five zonal tidal

waves (Ω1, S sa, Mm, M f , M′
f
) together with the re-

maining annual signal in the station coordinates were

estimated. The corresponding Love and Shida numbers

are plotted in Figure 1. The good agreement between

the estimated Love number of the semi-annual tide S sa

(0.558 ± 0.010) and of the pole tide (0.550 ± 0.011)

is clearly visible. The vertical amplitude of the esti-

mated harmonic annual signal at most of the stations

reaches several millimeters (not shown here). This ap-

proach in solution P5 gives the best agreement between

the estimated and theoretical pole tide Love number

from all five solutions which were carried out. In the

last two rows of Table 4 results obtained by Petrov

(1998) and Gipson and Ma (1998) are shown. Petrov
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(1998) used only early VLBI data covering time span

of 4 years (from 1984 to 1987) for his computation.

Even though his Love number estimate (0.65) lies close

to the theoretical value (0.62) its large formal error of

0.20 reflects the high uncertainty of the result. Gipson

and Ma (1998) included VLBI sessions from 1979 to

1996 and their estimates agree with the theoretical val-

ues within the formal errors.

5 Conclusions

Our estimate of the Love number for the semi-annual

tide is 9.7% lower than the theoretical value. Similarly,

the Love number of the pole tide is lower by about

11.4% than in theory. Both the a priori application of

a hydrology loading model (mainly annual and semi-

annual frequency content) in the analysis and the es-

timation of annual station positions slightly bring the

estimates of zonal Love numbers closer to their theo-

retical values but still a significant difference remains.

The empirical Shida numbers for the periods of half

year and longer are always bigger than the theoretical

values. A next step could be a revision of the theoretical

model of solid Earth tides by re-estimating the included

Earth parameters.
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