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ABSTRACT

Aims. The signature of free core nutation (FCN) is found in the motion of the celestial intermediate pole in the celestial reference
frame and in the resonance behaviour of the frequency-dependent Earth tidal displacement in its diurnal band. We focus on estimation
of the FCN parameters, i.e. the period and amplitude.
Methods. We run several global adjustments of 27 years of very long baseline interferometry (VLBI) data (1984.0–2011.0) to deter-
mine the FCN period from partial derivatives of the VLBI observables with respect to the FCN as contained in the nutation of the
celestial intermediate pole and in the solid Earth tidal displacement in the diurnal band. Finally, we estimate the FCN period by a
global adjustment from both phenomena simultaneously, which has not been done before.
Results. We find that our estimate of the FCN period of −431.18 ± 0.10 sidereal days slightly deviates from the conventional value
of −431.39 sidereal days. Additionally, we present our empirical model of the FCN with variable amplitude and phase compatible
with the estimated period.

Key words. publications, bibliography – methods: data analysis – techniques: interferometric – astrometry – reference systems –
Earth

1. Introduction

The rotating Earth has several free rotational modes, one of
them being free core nutation (FCN). This normal mode is
caused by the fact that the ellipsoidal liquid core inside the
visco-elastic Earth’s mantle rotates around an axis which is
slightly misaligned with the axis of the mantle. In the celes-
tial reference frame (CRF) it is visible as a retrograde mo-
tion of the Earth figure axis with a period of about 431 days
and has an amplitude of about 100 microarcseconds (Mathews
et al. 2002; Vondrák et al. 2005; Lambert & Dehant 2007).
Since there are no models available which could predict this
free motion with its time-varying excitation and damping, it
is not included in the precession-nutation model of the Earth
axis adopted in the current International Earth Rotation and
Reference Systems Service (IERS) conventions 2010 (Petit
& Luzum 2010). Therefore, the dominant part of the resid-
uals between the direction of the celestial intermediate pole
(CIP) in the CRF as observed by very long baseline interfer-
ometry (VLBI) and the direction modelled by the very accu-
rate precession-nutation model, adopted by the International
Astronomical Union (IAU), IAU 2006/2000A (Mathews et al.
2002; Capitaine et al. 2003) is caused by the FCN. In the terres-
trial reference frame (TRF) the motion is observed at a period
of about one day and is designated as nearly diurnal free wobble
(NDFW). At this frequency, i.e. in the diurnal band, there is a
strong resonance between the NDFW and the solid Earth tidal
displacement. In this work we focus on estimation of the FCN
period from the nutation motion of the Earth’s axis in space and
also from the resonance behaviour in the diurnal tidal band.

Fig. 1. Fourier spectrum of CPO (dX + idY) estimated with software
VieVS with respect to the IAU 2006/2000A precession-nutation model.

There have been several investigations on the FCN pe-
riod from VLBI data in the past. For example, spectral and
wavelet techniques have been applied to the celestial pole off-
sets (CPO) to estimate the period and amplitude of the FCN.
It turned out that the obtained spectrum contains broad double
peaks in the vicinity of the expected FCN signal (e.g. Malkin &
Miller 2007) or an apparently varying period between −425 to
−450 days (Schmidt et al. 2005). Figure 1 shows the spectrum
of the CPO with a double peak around −410 and −470 days as
obtained by fast Fourier transformation of our VLBI estimates
from 1984.0 to 2011.0.

Earth rotation theory, as nowadays widely accepted, pre-
dicts one strong oscillation with a stable period. The apparent
change of the period, which is seen in the spectral analysis of
CPO, is attributed to a variable phase and amplitude of the ro-
tation. The non-rigid Earth nutation model of Mathews et al.
(2002) is the basis for the current IAU 2000A nutation model.
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It predicts an FCN period between −429.93 and −430.48 solar
days. The time stability of the FCN period was first examined
by Roosbeek et al. (1999), who found a period between −431
and −434 sidereal days from analysing several sub-intervals of
the VLBI time series. They used the transfer function by Wahr
(1979), which expresses the ratio between rigid and non-rigid
amplitudes of nutation terms at their frequencies and which ac-
counts for a resonance effect of the FCN at forced nutations. This
proposal of Roosbeek et al. (1999) for an indirect estimation of
the FCN period was extended by Vondrák et al. (2005) by ap-
plying the transfer function given in Mathews et al. (2002) to the
CPO obtained by a combined VLBI/global positioning system
(GPS) solution, yielding a stable value of −430.55 ± 0.11 so-
lar days (−431.73 ± 0.11 sidereal days). Lambert & Dehant
(2007) extended the work of Vondrák et al. (2005) by investi-
gating the CPO time series from 1984.0 to 2006.0 provided by
several VLBI analysis centres. They concluded that the resonant
period stays stable within half a day with an average value of
−429.75 ± 0.42 solar days (−430.93 ± 0.42 sidereal days).

All these studies estimated the FCN period “a posteriori”,
i.e. by analysing the CPO time series. In this work we use a com-
mon adjustment of the VLBI measurements for the estimation of
the FCN period within a so-called global solution, where partial
derivatives of the group delay τ, i.e. of the primary geodetic ob-
servable of the VLBI technique, with respect to the FCN period
are set up.

2. FCN in nutation motion

The FCN components XFCN and YFCN in a nutation model can be
described by a time-varying sinusoidal representation:

XFCN = AC cos(σFCNt) − AS sin(σFCNt),
YFCN = AS cos(σFCNt) + AC sin(σFCNt), (1)

where AC and AS are the amplitudes of the cosine and sine term,
t is the time given since J2000.0, and σFCN is the frequency of
FCN in the CRF.

In order to obtain the partial derivatives of the VLBI observ-
able with respect to the FCN period and amplitude, the Eqs. (1)
for FCN offsets are included into the description of the celestial
motion of the CIP. The FCN offsets from Eqs. (1) are simply
added to the celestial pole coordinates X(IAU) and Y(IAU) follow-
ing the IAU 2006/2000A precession-nutation model:

X = XFCN + X(IAU),
Y = YFCN + Y(IAU).

(2)

This addition is practically equivalent to a multiplication of the
transformation matrix Q(IAU) (Petit & Luzum 2010):

Q(t) = dQ(t) ·Q(t)(IAU) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 XFCN
0 1 YFCN

−XFCN −YFCN 1

⎤⎥⎥⎥⎥⎥⎥⎦ ·Q(t)(IAU). (3)

For the combined estimation of the FCN period PFCN with the
solid Earth tidal displacement, we express the FCN frequency in
the CRF with the frequency of NDFW in the TRF σNDFW. The
transformation is done by a basic relationship between frequen-
cies in the terrestrial and celestial reference systems:

PFCN =
2π
σFCN

=
1

1 − σNDFW

1
sd
· (4)

It follows thatσFCN = 2π·sd(1−σNDFW) with sd = 1.002737909
giving the number of sidereal days per one solar day. The partial

derivatives of dQ with respect to the NDFW frequency σNDFW
then read

∂dQ(t)
∂σNDFW

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 −2π · sd · t · Υx

0 0 −2π · sd · t · Υy
2π · sd · t · Υx 2π · sd · t · Υy 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
(5)

where Υx and Υy denote

Υx = −AC sin(σFCNt) − AS cos(σFCNt),
Υy = −AS sin(σFCNt) + AC cos(σFCNt). (6)

The partial derivatives of dQ with respect to the amplitude of the
cosine term AC are easily created as

∂dQ(t)
∂AC

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 cos(σFCNt)
0 0 sin(σFCNt)

− cos(σFCNt) − sin(σFCNt) 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (7)

and the partial derivatives of dQ with respect to the amplitude of
the sine term AS read

∂dQ(t)
∂AS

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 − sin(σFCNt)
0 0 cos(σFCNt)

sin(σFCNt) − cos(σFCNt) 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (8)

The incorporation of the partial derivatives of dQ into the partial
derivative of the whole basic VLBI model follows as

∂τ

∂σNDFW
= k(t) · ∂dQ(t)

∂σNDFW
· Q(t)(IAU) · R(t) ·W(t) · b(t), (9)

where k is the source unit vector defined in the barycentric ce-
lestial reference system, Q, R and W are the transformation ma-
trices between the CRF and TRF due to nutation, Earth rotation
angle, and polar motion respectively, and b is the baseline vec-
tor between two VLBI stations expressed in the terrestrial refer-
ence system. In the same way one gets the partial derivative of
the VLBI model with respect to the amplitude of the cosine and
sine term.

2.1. Analysis of the VLBI measurements

We estimated the FCN period from the motion of the CIP in the
geocentric celestial reference system (GCRS) as a global param-
eter in a common adjustment (global solution) of 3360 24-h ses-
sions of the International VLBI Service for geodesy and astrom-
etry (IVS; Schuh & Behrend 2012). These sessions fulfil two
criteria: a) the network is built with at least three stations; and
b) the a posteriori sigma of unit weight obtained from a single-
session adjustment does not exceed the value of 2. The whole
analysis of 4.6 million observations from 1984.0 to 2011.0 was
done with the Vienna VLBI Software (VieVS; Böhm et al.
2012). The theoretical time delays were modelled according to
recent IERS Conventions 2010, with the exception of applying a
priori corrections on station coordinates due to non-tidal atmo-
sphere loading (Petrov & Boy 2004), which is a common proce-
dure in VLBI analysis. The celestial motion of the CIP was mod-
elled according to Eqs. (2). The FCN offsets were taken from the
model by Lambert (2007), who uses the a priori FCN period of
−431.39 sidereal days by Mathews et al. (2002) and provides the
amplitude terms AC and AS as determined empirically from the
CPO in the IERS EOP05 C04 combined series. The values of AC
and AS are given in yearly steps and the amplitudes during the
year are obtained by linear interpolation.
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Table 1. Period of the FCN estimated in solutions S1 and S2, together with constant corrections to the a priori amplitudes of the FCN from Lambert
(2007) and to the annual and semi-annual nutation terms given in the IAU 2000A model.

Solution P AC AS AC AS AC AS

[sid. days] [μas] [μas] [μas] [μas] [μas] [μas]
FCN annual term semi-annual term

S1 −431.17 ± 0.09 64.6 ± 1.0 34.0 ± 1.2 – – – –
S2 −431.18 ± 0.09 64.1 ± 1.0 33.9 ± 1.2 −4.6 ± 1.0 14.9 ± 0.9 −19.3 ± 0.9 −8.9 ± 0.9

The VieVS was extended with partial derivatives of the mea-
sured time delay with respect to the FCN period as described in
Eq. (9) and to the FCN amplitude. Furthermore, partial deriva-
tives with respect to the annual and semi-annual harmonic terms
in the nutation motion were added.

Two solutions were run with the same a priori parameterisa-
tion. In both solutions a new TRF and a new CRF were estimated
as global parameters by applying no-net-translation and no-net-
rotation conditions with respect to VTRF2008 (Böckmann et al.
2010) and ICRF2 (Fey et al. 2009) respectively. Clock parame-
ters, zenith wet delays, tropospheric parameters, and Earth rota-
tion parameters were session-wise reduced.

– In solution S1 the FCN period together with the constant cor-
rections to the cosine and sine amplitude terms were esti-
mated as global parameters.

– Solution S2 is identical to solution S1, but additional cosine
and sine amplitudes of the annual and semi-annual harmonic
terms in nutation were determined.

Due to the non-linear relationship of the FCN period in the
FCN offsets, several iterative solutions had to be run. In solu-
tion S1 the period of FCN in the global solution is estimated
as −431.17 ± 0.09 sidereal days and the amplitude corrections
are 64.6 ± 1.0 μas for the cosine term and 34.0 ± 1.2 μas for
the sine term. The resulting FCN period obtained from solu-
tion S2 (−431.18 ± 0.09 sidereal days) is almost identical to the
estimates from solution S1. The values of the remaining abso-
lute amplitudes of the annual and semi-annual terms (in addi-
tion to the values included in the IAU 2000A nutation model)
are 15.6 ± 1.0 μas and 21.3 ± 1.0 μas respectively. The ampli-
tude value from the cosine and sine terms is obtained in the
usual way as A =

√
(A2

C + A2
S). The comparison of solutions S1

and S2 shows that an additional estimation of corrections to the
annual and semi-annual nutation terms does not influence the
FCN period determination. The FCN period from solutions S1
and S2 with the constant corrections to the cosine and sine am-
plitude terms for the FCN and the annual and semi-annual nuta-
tion terms are summarised in Table 1.

3. FCN in solid Earth tides

The FCN affects the solid Earth tides in their diurnal band, caus-
ing a strong resonance effect. The Love and Shida numbers, i.e.
the proportionality parameters between the tide-generating po-
tential and the tidal displacement, for the diurnal tidal waves
in the vicinity of the NDFW period depend on frequency,
see e.g. Krásná et al. (2013). We use the resonance effect in
these tidal waves to determine the FCN period directly from
VLBI analysis, which was first done by Haas & Schuh (1996).
Love and Shida numbers in the diurnal band can be represented
by a resonance formula as a function of the tidal excitation fre-
quencies with the frequency of Chandler wobble σCW, of the

NDFW σNDFW, and of the free inner core nutation (FICN) σFICN
(Mathews et al. 1995; Petit & Luzum 2010):

Lf = L0 +
LCW

σf − σCW
+

LNDFW

σf − σNDFW
+

LFICN

σf − σFICN
, (10)

where Lf is a generic symbol for the frequency-dependent
Love (h) and Shida (l) numbers, with L0, LCW, LNDFW, and LFICN
as resonance coefficients (Petit & Luzum 2010). In the terrestrial
diurnal band only the periods of the NDFW and the FICN can
be found. The principal resonance comes from the NDFW with
a resonance strength factor (LNDFW = 0.18053×10−3) 100 times
larger than that of the FICN (−0.18616 × 10−5). The partial
derivative of the station displacement in the local coordinate
system with respect to the NDFW frequency follows from the
frequency-dependent corrections δdf to the displacement vector,
which can be written as (Petit & Luzum 2010)

δdf = −3

√
5

24π
Hf

{
δhf

1
2

sin 2Φ sin(θf + Λ) r̂

+ δlf sinΦ cos(θf + Λ)ê

+ δlf cos 2Φ sin(θf + Λ)n̂

}
, (11)

where δhf and δlf are the corrections to the constant values of
Love and Shida numbers h2 and l2, which equal to 0.6078 and
0.0847 respectively, according to Petit & Luzum (2010); Hf is
the amplitude of the tidal term with frequency f using the defin-
ing convention by Cartwright & Tayler (1971); Φ and Λ are the
geocentric latitude and longitude of the station; θf is the tide ar-
gument for tidal constituent with frequency f ; r̂, ê, n̂ are unit vec-
tors in radial, east, and north direction respectively.

The partial derivative of the basic VLBI model with respect
to the NDFW frequency contained in the solid Earth tides, i.e. in
the displacement of stations building a baseline, is in its general
form given by Eq. (12):

∂τ

∂σNDFW
= k(t) · Q(t) · R(t) ·W(t) · ∂b(t)

∂σNDFW
· (12)

For the analysis of the VLBI measurements, the same a priori
modelling and parameterisation as described in Sect. 2.1 were
applied. The FCN period was obtained together with a simul-
taneously estimated TRF and CRF. After four iterative runs the
period stayed stable at −431.23 ± 2.44 sidereal days.

4. Simultaneous estimation of the FCN period
from solid Earth tides and nutation

In previous sections the presence and effects of the FCN in the
solid Earth tides and in the nutation of the CIP were treated sep-
arately. In this part we introduce a rigorous determination of the
FCN period, where the partial derivative of the observation equa-
tion contains changes in both parameters (nutation matrix and
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Table 2. Cosine and sine amplitude terms of the FCN model determined in yearly steps within global solutions of VLBI measurements.

Year AC [μas] AS [μas] Year AC [μas] AS [μas] Year AC [μas] AS [μas]

1986.0 −256.6 ± 9.8 −162.6 ± 9.8 1994.0 −108.3 ± 2.6 19.7 ± 2.6 2002.0 98.4 ± 2.0 −82.9 ± 2.0

1987.0 −261.1 ± 9.1 −104.3 ± 9.1 1995.0 −105.2 ± 2.1 17.7 ± 2.2 2003.0 104.5 ± 1.9 −71.0 ± 1.9

1988.0 −216.3 ± 9.1 −84.9 ± 9.1 1996.0 −99.4 ± 2.2 18.3 ± 2.2 2004.0 109.0 ± 1.8 −56.2 ± 1.7

1989.0 −180.5 ± 7.5 −45.6 ± 7.5 1997.0 −89.9 ± 2.3 16.9 ± 2.3 2005.0 111.9 ± 2.0 −23.0 ± 2.0

1990.0 −166.0 ± 6.1 −6.3 ± 6.1 1998.0 −76.0 ± 2.4 2.8 ± 2.4 2006.0 121.1 ± 1.8 25.4 ± 1.8

1991.0 −145.3 ± 5.0 19.8 ± 5.0 1999.0 −39.8 ± 2.7 −32.2 ± 2.8 2007.0 150.3 ± 1.7 75.5 ± 1.7

1992.0 −146.3 ± 4.0 26.7 ± 3.9 2000.0 8.3 ± 2.6 −82.3 ± 2.6 2008.0 162.1 ± 1.8 134.0 ± 1.8

1993.0 −128.7 ± 3.0 23.5 ± 3.0 2001.0 57.7 ± 2.3 −102.4 ± 2.3 2009.0 145.8 ± 2.2 156.3 ± 2.2

baseline vector), which are influenced by the presence of the
FCN:

∂τ

∂σNDFW
= k(t) · ∂dQ(t)

∂σNDFW
· Q(t)(IAU) · R(t) ·W(t) · b(t)

+ k(t) · Q(t) · R(t) ·W(t) · ∂b(t)
∂σNDFW

· (13)

The treatment of the FCN in the CIP motion agrees with solu-
tion S1 in Sect. 2, i.e. a priori values for the FCN period and am-
plitudes are taken from the model of Lambert (2007). Constant
offsets to the sine and cosine amplitudes over the 27 years of
VLBI data are estimated in the global adjustment. Other glob-
ally estimated parameters are the TRF and CRF. The estimate
of the FCN period after four iterations is −431.18 ± 0.10 side-
real days, which is very close to the result from the “nutation
only” solution. We assume that the highly precise estimation of
the FCN period from nutation motion is achieved by the direct
observation of the FCN in the rotation motion of the Earth axis.
The less precise estimate of the FCN period obtained from the
station displacement may reflect the indirect resonance effect on
the solid Earth tidal motion.

5. Empirical FCN model with globally estimated
varying amplitude

In Sect. 2 the FCN model created by Lambert (2007) was in-
troduced where the time-varying amplitudes (cosine and sine
terms) were fitted through the CPO in IERS EOP 05 C04 com-
bined series with a sliding window over two years and displaced
by one year. Following this idea of a varying amplitude and
phase estimated in a one-year step, we determined the ampli-
tudes AC and AS in several global solutions. The data input for
each run are VLBI measurements carried out over four years,
starting in 1984.0. Estimated parameters are constant cosine
and sine amplitude terms corresponding to the FCN period of
−431.18 sidereal days, as estimated in the joint adjustment de-
scribed in Sect. 4. The partial derivatives are given by Eqs. (7)
and (8) and the estimates of the AC and AS refer to the mid-
dle of the analysed data spans. Other estimated parameters are
the session-wise reduced clock parameters, zenith wet delays,
tropospheric gradients, and Earth rotation parameters. The TRF
and CRF are fixed to the reference frames estimated in Sect. 4
to avoid a different datum definition dependent on included sta-
tions and radio sources in the respective groups of four years’
measurement data. In the first run data from 1984.0 to 1988.0
were involved and thus the estimates are valid for 1986.0. The
second global solution includes data from 1985.0 till 1989.0, and

Fig. 2. CPO with respect to the IAU 2006/2000A precession-nutation
model (grey) together with the FCN model (light grey) estimated in this
work. Before 1986.0 and after 2009.0, the model is extrapolated.

it continues to the year 2011.0. The estimated values are shown
in Table 2 and the resulting FCN model is plotted in Fig. 2. We
found a very good agreement between our solution and the one
from Lambert (2007) with differences in the cosine and sine am-
plitudes smaller than several microarcseconds.

6. Conclusions

The FCN period is estimated within a global VLBI solution from
solid Earth tidal displacement as −431.23 ± 2.44 sidereal days
and from the motion of the CIP as −431.17 ± 0.09 sidereal days,
together with constant sine and cosine amplitude terms. The final
value for the FCN period is derived from the solid Earth tidal dis-
placement and from the motion of the CIP in a joint solution. Its
estimated value of −431.18 ± 0.10 sidereal days differs slightly
from the conventional value −431.39 sidereal days given in Petit
& Luzum (2010). Furthermore, we present new values of an em-
pirical FCN model. The period is fixed to the value determined
in our joint solution, and the cosine and sine amplitudes are esti-
mated from several global solutions in yearly steps directly from
VLBI measurements.
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