Technical Description of Solutions BoehmS_etal2022_INTvie.eopi and BoehmS_etal2022_SI.eopi ------------------------------------------------------------------------------------------- 1. Purpose of solution: estimation of UT1-UTC from VLBI intensive sessions (SI, INT1, INT3) 2. Analysis Center: VIE (TU Wien) 3. Analysis Software: Vienna VLBI and Satellite Software (VieVS) 4. Estimated parameters: a. Celestial reference frame: no b. Terrestrial reference frame: no c. Earth orientation: UT1-UTC is set-up as piece-wise linear offsets (360 min) with 1e-4 mas constraints, reference epoch is mid of session. d. Zenith troposphere: piece-wise linear offset (360 min), relative constraints 0.1 cm. e. Troposphere gradients: no f. Station clocks (per station): piece-wise linear offset (360 min). g. Baseline-dependent clock offset: no 5. A priori CRF, TRF and EOP a. CRF source positions: ICRF3 (including Galactic Aberration) b. TRF station positions/velocities: vievsTrf - https://www.vlbi.at/data/analysis/ggrf/trf_vie2020_211030_withVGOS.TXT c. Precession/nutation model: IAU2006A d. x and y pole coordinates, UT1-UTC and celestial pole offsets dX, dY: EOP finals: https://datacenter.iers.org/data/9/finals2000A.all, lagrange interpolation, zonal tidal variations are removed from UT1-UTC before interpolation e. A priori short period (~diurnal and semidiurnal) tidal variations in x, y, dUT1: Desai & Sibois (2016) (ocean tides) and libration according to IERS Conventions 2010. 6. A priori station models a. Axis offsets: https://github.com/anothnagel/antenna-info.git/trunk/antenna-info.txt b. Eccentricities: 'ECCDAT_v2019Dec19.ecc' c. Thermal deformation: according to IVS conventions https://github.com/anothnagel/antenna-info.git/trunk/antenna-info.txt d. Gravitational deformation: https://ivscc.gsfc.nasa.gov/IVS_AC/apriori/gravity_deform_model_v2019Nov21.txt e. Solid Earth tides: IERS Conventions 2010 f. Tidal ocean loading: TPXO.7.2 g. Solid Earth pole tide: secular pole function as described in IERS Conventions ch.7 update from 2018-02-01 h. Ocean pole tide: according to IERS Conventions 2010 e. Tidal atmospheric loading: https://vmf.geo.tuwien.ac.at/APL_products/TIDAL/s1_s2_s3_cm_noib_vlbi.dat f. Non-tidal atmospheric loading: VIENNA_APL from https://vmf.geo.tuwien.ac.at/APL_products/VLBI/ 7. A priori troposphere: a. zenith delay: - hydrostatic part is calculated from surface pressure + Saastamoinen. - wet part is estimated, no a priori model b. mapping functions: - hydrostatic: VMF3 - wet: VMF1 8. Data type: Group delays from vgosDB 9. Data editing: none (no elevation cut-off) 10. Data weighting: - Only observations with a zero quality flag in vgosDB are used. - A constant noise of 0.5 cm is added to all observations. - All observations are subject to an outlier test. References: 1. Altamimi, Z., P. Rebischung, L. Métivier, and X. Collilieux, "ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res. Solid Earth, vol. 121, Issue #8, pp. 6109-6131, 2016. doi:10.1002/2016JB013098. 2. Charlot, P., et al, 'The Third Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry'; Astronomy and Astrophysics, 2020, DOI: https://doi.org/10.1051/0004-6361/202038368. 3. MacMillan, D.S. and C. Ma, "Atmospheric gradients from very long baseline interferometry observations", Geophys. Res. Lett., 22, 1041-1044, 1995. 4. MacMillan, D.S. and C. Ma, "Atmospheric gradients and the VLBI terrestrial and celestial reference frames", Geophys. Res. Lett., 24, 453-456, 1997. 5. Petit, Gerard and Luzum, Brian, 'IERS Conventions (2010), IERS Technical Note 36, 2010. 6. Nothnagel, A., "Short Note: Conventions on Thermal Expansion Modelling of Radio Telescopes for Geodetic and Astrometric VLBI," Journal of Geodesy, DOI: 10.1007/s00190-008-0284-z, 2008.